5zn2
X-ray structure of protein kinase ck2 alpha subunit H148A mutantX-ray structure of protein kinase ck2 alpha subunit H148A mutant
Structural highlights
Function[CSK21_HUMAN] Catalytic subunit of a constitutively active serine/threonine-protein kinase complex that phosphorylates a large number of substrates containing acidic residues C-terminal to the phosphorylated serine or threonine. Regulates numerous cellular processes, such as cell cycle progression, apoptosis and transcription, as well as viral infection. May act as a regulatory node which integrates and coordinates numerous signals leading to an appropriate cellular response. During mitosis, functions as a component of the p53/TP53-dependent spindle assembly checkpoint (SAC) that maintains cyclin-B-CDK1 activity and G2 arrest in response to spindle damage. Also required for p53/TP53-mediated apoptosis, phosphorylating 'Ser-392' of p53/TP53 following UV irradiation. Can also negatively regulate apoptosis. Phosphorylates the caspases CASP9 and CASP2 and the apoptotic regulator NOL3. Phosphorylation protects CASP9 from cleavage and activation by CASP8, and inhibits the dimerization of CASP2 and activation of CASP8. Regulates transcription by direct phosphorylation of RNA polymerases I, II, III and IV. Also phosphorylates and regulates numerous transcription factors including NF-kappa-B, STAT1, CREB1, IRF1, IRF2, ATF1, SRF, MAX, JUN, FOS, MYC and MYB. Phosphorylates Hsp90 and its co-chaperones FKBP4 and CDC37, which is essential for chaperone function. Regulates Wnt signaling by phosphorylating CTNNB1 and the transcription factor LEF1. Acts as an ectokinase that phosphorylates several extracellular proteins. During viral infection, phosphorylates various proteins involved in the viral life cycles of EBV, HSV, HBV, HCV, HIV, CMV and HPV.[1] [2] [3] [4] Publication Abstract from PubMedCasein kinase 2 (CK2) has broad phosphorylation activity against various regulatory proteins, which are important survival factors in eukaryotic cells. To clarify the hydration structure and catalytic mechanism of CK2, we determined the crystal structure of the alpha subunit of human CK2 containing hydrogen and deuterium atoms using joint neutron (1.9 A resolution) and X-ray (1.1 A resolution) crystallography. The analysis revealed the structure of conserved water molecules at the active site and a long potential hydrogen bonding network originating from the catalytic Asp156 that is well known to enhance the nucleophilicity of the substrate OH group to the gamma-phospho group of ATP by proton elimination. His148 and Asp214 conserved in the protein kinase family are located in the middle of the network. The water molecule forming a hydrogen bond with Asp214 appears to be deformed. In addition, mutational analysis of His148 in CK2 showed significant reductions by 40%-75% in the catalytic efficiency with similar affinity for ATP. Likewise, remarkable reductions to less than 5% were shown by corresponding mutations on His131 in death-associated protein kinase 1, which belongs to a group different from that of CK2. These findings shed new light on the catalytic mechanism of protein kinases in which the hydrogen bond network through the C-terminal domain may assist the general base catalyst to extract a proton with a link to the bulk solvent via intermediates of a pair of residues. Hydration Structures of the Human Protein Kinase CK2alpha Clarified by Joint Neutron and X-ray Crystallography.,Shibazaki C, Arai S, Shimizu R, Saeki M, Kinoshita T, Ostermann A, Schrader TE, Kurosaki Y, Sunami T, Kuroki R, Adachi M J Mol Biol. 2018 Oct 23. pii: S0022-2836(18)30259-6. doi:, 10.1016/j.jmb.2018.09.018. PMID:30359582[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|