Ribonucleotide reductase
FunctionRibonucleotide reductase (RNR) or ribonucleotide-diphosphate reductase catalyzes the formation of deoxyribonucleotides from ribonucleotides[1]. There are 3 classes of RNR.
E. Coli contains two types of RNR: the aerobic RNR belongs to class Ia and is composed of proteins R1 and R2, the anaerobic RNR belongs to class Ib.
For details on human RNR2 see P53R2. For mouse RNR see Mouse Ribonucleotide Reductase R2. RelevanceRNR inhibitors are studied as therapeutic antiviral, antibacterial and anti-cancer drugs[6]. Structural highlightsClass II RNR is . The active site which binds the substrate is in a tight pocket and contains conserved residues involved in the catalytic mechanism [7].
|
|
3D Structures of Ribonucleotide reductase3D Structures of Ribonucleotide reductase
Updated on 16-October-2018
Class Ib RNR
- 6cgm - BaRNR subunit NrdE – Bacillus subtilis
- 6cgn, 6cgl - BaRNR subunit NrdE + AMP derivative
- 1pem - StRNR NrdE – Salmonella typhimurium
- 1peo, 1peq, 1peu - StRNR NrdE + nucleotide
- 2bq1 - StRNR NrdE + NrdF + Fe + GTP
- 4dr0 - BaRNR subunit NrdF + Mn
- 4bmq, 4bmr, 4bmt - BcRNR NrdF + Fe – Bacillus cereus
- 4bmu - BcRNR NrdF + Mn
- 4bmo, 4bmp - BcRNR NrdF + NrdI + Fe + FMN
- 4m1f - EcRNR NrdF
- 3n37 - EcRNR NrdF + Mn
- 3n38 - EcRNR NrdF + Fe
- 3n39, 3n3a - EcRNR NrdF + NrdI + Mn + FMN
- 3n3b - EcRNR NrdF + NrdI + Mn + FMN + Fe2O
- 4n82 – SsRNR + FMN – Streptococcus sanguinis
- 4n83 - SsRNR NrdF + Mn
- 1r2f - StRNR NrdF + Fe
- 2r2f - StRNR NrdF + Fe2O
- 3mjo - CcRNR NrdF + Mn - Corynebacterium ammoniagenes
- 1kgn, 1kgo, 1kgp, 1oqu, 3dhz - CcRNR NrdF + Fe
- 6cgm - BaRNR subunit NrdE – Bacillus subtilis
- Class II ribonucleotide reductase
- 1xjf, 4col – TmRNR + DATP – Thermotoga maritima
- 4coi, 4com, 4con – TmRNR
- 1xjg, 1xjk, 1xje, 1xjn, 4coj - TmRNR + 2 nucleotides
- 1xjj - TmRNR + GTP
- 1xjm - TmRNR + TTP
- 3o0n - TmRNR + TTP + Co + Mg + deoxyadenosine + B12
- 3o0o - TmRNR + TTP + GDP + Mg + deoxyadenosine + B12
- 3o0q - TmRNR + TTP + GDP + Mg + adenosine
- 1l1l – RNR (mutant) – Lactobacillus leichmannii
- 1xjf, 4col – TmRNR + DATP – Thermotoga maritima
- Class III ribonucleotide reductase
ReferencesReferences
- ↑ Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem. 2006;75:681-706. PMID:16756507 doi:http://dx.doi.org/10.1146/annurev.biochem.75.103004.142443
- ↑ Cotruvo JA, Stubbe J. Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem. 2011;80:733-67. doi: 10.1146/annurev-biochem-061408-095817. PMID:21456967 doi:http://dx.doi.org/10.1146/annurev-biochem-061408-095817
- ↑ Cotruvo JA, Stubbe J. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo. Biochemistry. 2011 Mar 15;50(10):1672-81. doi: 10.1021/bi101881d. Epub 2011 Feb, 15. PMID:21250660 doi:http://dx.doi.org/10.1021/bi101881d
- ↑ Sintchak MD, Arjara G, Kellogg BA, Stubbe J, Drennan CL. The crystal structure of class II ribonucleotide reductase reveals how an allosterically regulated monomer mimics a dimer. Nat Struct Biol. 2002 Apr;9(4):293-300. PMID:11875520 doi:http://dx.doi.org/10.1038/nsb774
- ↑ Kirdis E, Jonsson IM, Kubica M, Potempa J, Josefsson E, Masalha M, Foster SJ, Tarkowski A. Ribonucleotide reductase class III, an essential enzyme for the anaerobic growth of Staphylococcus aureus, is a virulence determinant in septic arthritis. Microb Pathog. 2007 Nov-Dec;43(5-6):179-88. doi: 10.1016/j.micpath.2007.05.008., Epub 2007 May 25. PMID:17606358 doi:http://dx.doi.org/10.1016/j.micpath.2007.05.008
- ↑ Munro JB, Silva JC. Ribonucleotide reductase as a target to control apicomplexan diseases. Curr Issues Mol Biol. 2012;14(1):9-26. Epub 2011 Jul 26. PMID:21791713
- ↑ Larsson KM, Jordan A, Eliasson R, Reichard P, Logan DT, Nordlund P. Structural mechanism of allosteric substrate specificity regulation in a ribonucleotide reductase. Nat Struct Mol Biol. 2004 Nov;11(11):1142-9. Epub 2004 Oct 10. PMID:15475969 doi:http://dx.doi.org/10.1038/nsmb838