2ppf

From Proteopedia
Revision as of 04:39, 31 March 2008 by OCA (talk | contribs)
Jump to navigation Jump to search
File:2ppf.jpg


PDB ID 2ppf

Drag the structure with the mouse to rotate
, resolution 1.65Å
Ligands: , , , ,
Gene: nirK, nir (Alcaligenes faecalis)
Activity: Nitrite reductase (NO-forming), with EC number 1.7.2.1
Related: 1J9R


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Reduced mutant D98N of AfNiR exposed to nitric oxide


OverviewOverview

Nitrite reductase (NiR) is an enzyme that uses type 1 and type 2 copper sites to reduce nitrite to nitric oxide during bacterial denitrification. A copper-nitrosyl intermediate is a proposed, yet poorly characterized feature of the NiR catalytic cycle. This intermediate is formally described as Cu(I)-NO+ and is proposed to be formed at the type 2 copper site after nitrite binding and electron transfer from the type 1 copper site. In this study, copper-nitrosyl complexes were formed by prolonged exposure of exogenous NO to crystals of wild-type and two variant forms of NiR from Alcaligenes faecalis (AfNiR), and the structures were determined to 1.8 A or better resolution. Exposing oxidized wild-type crystals to NO results in the reverse reaction and formation of nitrite that remains bound at the active site. In a type 1 copper site mutant (H145A) that is incapable of electron transfer to the type 2 site, the reverse reaction is not observed. Instead, in both oxidized and reduced H145A crystals, NO is observed bound in a side-on manner to the type 2 copper. In AfNiR, Asp98 forms hydrogen bonds to both substrate and product bound to the type 2 Cu. In the D98N variant, NO is bound side-on but is more disordered when observed for the wild-type enzyme. The solution EPR spectra of the crystallographically characterized NiR-NO complexes indicate the presence of an oxidized type 2 copper site and thus are interpreted as resulting from stable copper-nitrosyls and formally assigned as Cu(II)-NO-. A reaction scheme in which a second NO molecule is oxidized to nitrite can account for the formation of a Cu(II)-NO- species after exposure of the oxidized H145A variant to NO gas.

About this StructureAbout this Structure

2PPF is a Single protein structure of sequence from Alcaligenes faecalis. Full crystallographic information is available from OCA.

ReferenceReference

Stable copper-nitrosyl formation by nitrite reductase in either oxidation state., Tocheva EI, Rosell FI, Mauk AG, Murphy ME, Biochemistry. 2007 Oct 30;46(43):12366-74. Epub 2007 Oct 9. PMID:17924665

Page seeded by OCA on Mon Mar 31 04:39:03 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA