1wp1
Crystal structure of the drug-discharge outer membrane protein, OprMCrystal structure of the drug-discharge outer membrane protein, OprM
Structural highlights
Function[OPRM_PSEAE] The outer membrane component of the MexAB-OprM efflux system that confers multidrug resistance. Also functions as the major efflux pump for n-hexane and p-xylene efflux. Over-expression of the pump increases antibiotic and solvent efflux capacities. Can replace the OprJ outer membrane component of the MexCD-OprJ pump; the antibiotics exported are those exported by the intact MexCD pump, showing that efflux substrate specificity is not conferred by this component. Serves as the outer membrane component for the MexXY efflux system. Implicated in the secretion of the siderophore pyoverdine. OprM is probably involved in the efflux of the siderophore across the outer membrane.[1] [2] [3] [4] [5] The ability to export antibiotics and solvents is dramatically decreased in the presence of the proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP), showing that an energized inner membrane is required for efflux. It is thought that the MexB subunit is a proton antiporter.[6] [7] [8] [9] [10] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe OprM lipoprotein of Pseudomonas aeruginosa is a member of the MexAB-OprM xenobiotic-antibiotic transporter subunits that is assumed to serve as the drug discharge duct across the outer membrane. The channel structure must differ from that of the porin-type open pore because the protein facilitates the exit of antibiotics but not the entry. For better understanding of the structure-function linkage of this important pump subunit, we studied the x-ray crystallographic structure of OprM at the 2.56-angstroms resolution. The overall structure exhibited trimeric assembly of the OprM monomer that consisted mainly of two domains: the membrane-anchoring beta-barrel and the cavity-forming alpha-barrel. OprM anchors the outer membrane by two modes of membrane insertions. One is via the covalently attached NH(2)-terminal fatty acids and the other is the beta-barrel structure consensus on the outer membrane-spanning proteins. The beta-barrel had a pore opening with a diameter of about 6-8 angstroms, which is not large enough to accommodate the exit of any antibiotics. The periplasmic alpha-barrel was about 100 angstroms long formed mainly by a bundle of alpha-helices that formed a solvent-filled cavity of about 25,000 angstroms(3). The proximal end of the cavity was tightly sealed, thereby not permitting the entry of any molecule. The result of this structure was that the resting state of OprM had a small outer membrane pore and a tightly closed periplasmic end, which sounds plausible because the protein should not allow free access of antibiotics. However, these observations raised another unsolved problem about the mechanism of opening of the OprM cavity ends. The crystal structure offers possible mechanisms of pore opening and pump assembly. Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.,Akama H, Kanemaki M, Yoshimura M, Tsukihara T, Kashiwagi T, Yoneyama H, Narita S, Nakagawa A, Nakae T J Biol Chem. 2004 Dec 17;279(51):52816-9. Epub 2004 Oct 26. PMID:15507433[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|