1ums
STROMELYSIN-1 CATALYTIC DOMAIN WITH HYDROPHOBIC INHIBITOR BOUND, PH 7.0, 32OC, 20 MM CACL2, 15% ACETONITRILE; NMR ENSEMBLE OF 20 STRUCTURESSTROMELYSIN-1 CATALYTIC DOMAIN WITH HYDROPHOBIC INHIBITOR BOUND, PH 7.0, 32OC, 20 MM CACL2, 15% ACETONITRILE; NMR ENSEMBLE OF 20 STRUCTURES
Structural highlights
Disease[MMP3_HUMAN] Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:614466]. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.[1] [2] Function[MMP3_HUMAN] Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedStromelysin, a representative matrix metalloproteinase and target of drug development efforts, plays a prominent role in the pathological proteolysis associated with arthritis and secondarily in that of cancer metastasis and invasion. To provide a structural template to aid the development of therapeutic inhibitors, we have determined a medium-resolution structure of a 20-kDa complex of human stromelysin's catalytic domain with a hydrophobic peptidic inhibitor using multinuclear, multidimensional NMR spectroscopy. This domain of this zinc hydrolase contains a mixed beta-sheet comprising one antiparallel strand and four parallel strands, three helices, and a methionine-containing turn near the catalytic center. The ensemble of 20 structures was calculated using, on average, 8 interresidue NOE restraints per residue for the 166-residue protein fragment complexed with a 4-residue substrate analogue. The mean RMS deviation (RMSD) to the average structure for backbone heavy atoms is 0.91 A and for all heavy atoms is 1.42 A. The structure has good stereochemical properties, including its backbone torsion angles. The beta-sheet and alpha-helices of the catalytic domains of human stromelysin (NMR model) and human fibroblast collagenase (X-ray crystallographic model of Lovejoy B et al., 1994b, Biochemistry 33:8207-8217) superimpose well, having a pairwise RMSD for backbone heavy atoms of 2.28 A when three loop segments are disregarded. The hydroxamate-substituted inhibitor binds across the hydrophobic active site of stromelysin in an extended conformation. The first hydrophobic side chain is deeply buried in the principal S'1 subsite, the second hydrophobic side chain is located on the opposite side of the inhibitor backbone in the hydrophobic S'2 surface subsite, and a third hydrophobic side chain (P'3) lies at the surface. Solution structure of the catalytic domain of human stromelysin complexed with a hydrophobic inhibitor.,Van Doren SR, Kurochkin AV, Hu W, Ye QZ, Johnson LL, Hupe DJ, Zuiderweg ER Protein Sci. 1995 Dec;4(12):2487-98. PMID:8580839[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|