6ces

Revision as of 09:40, 28 March 2018 by OCA (talk | contribs) (New page: ==Cryo-EM structure of GATOR1-RAG== <StructureSection load='6ces' size='340' side='right' caption='6ces, resolution 4.00Å' scene=''> == Structural highlights == <...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Cryo-EM structure of GATOR1-RAGCryo-EM structure of GATOR1-RAG

Structural highlights

6ces is a 5 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[NPRL2_HUMAN] Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins, including NPRL2, are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[1] The disease is caused by mutations affecting the gene represented in this entry. [DEPD5_HUMAN] Rolandic epilepsy;Autosomal dominant nocturnal frontal lobe epilepsy;Autosomal dominant epilepsy with auditory features;Familial focal epilepsy with variable foci. The disease is caused by mutations affecting the gene represented in this entry. Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins, including DEPDC5, are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[2] [NPRL3_HUMAN] Inactivating mutations and truncating deletions in the genes encoding GATOR1 proteins are detected in glioblastoma and ovarian tumors and are associated with loss of heterozygosity events. Inactivation of GATOR1 proteins promotes constitutive localization of mTORC1 to the lysosomal membrane and blocks mTORC1 inactivation following amino acid withdrawal (PubMed:23723238).[3] The disease is caused by mutations affecting the gene represented in this entry.

Function

[RRAGA_HUMAN] Guanine nucleotide-binding protein that plays a crucial role in the cellular response to amino acid availability through regulation of the mTORC1 signaling cascade. Forms heterodimeric Rag complexes with RRAGC or RRAGD and cycles between an inactive GDP-bound and an active GTP-bound form. In its active form participates in the relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. Involved in the RCC1/Ran-GTPase pathway. May play a direct role in a TNF-alpha signaling pathway leading to induction of cell death. May alternatively act as a cellular target for adenovirus E3-14.7K, an inhibitor of TNF-alpha functions, thereby affecting cell death.[4] [5] [6] [7] [NPRL2_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[8] Suppresses Src-dependent tyrosine phosphorylation and activation of PDPK1 and its downstream signaling. Down-regulates PDPK1 kinase activity by interfering with tyrosine phosphorylation at 'Tyr-9', 'Tyr-373' and 'Tyr-376' residues. May act as a tumor suppressor. Suppresses cell growth and enhances sensitivity to various anticancer drugs.[9] [DEPD5_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[10] [11] [NPRL3_HUMAN] As a component of the GATOR1 complex functions as an inhibitor of the amino acid-sensing branch of the TORC1 pathway. The GATOR1 complex strongly increases GTP hydrolysis by RRAGA and RRAGB within RRAGC-containing heterodimers, thereby deactivating RRAGs, releasing mTORC1 from lysosomal surface and inhibiting mTORC1 signaling. The GATOR1 complex is negatively regulated by GATOR2 the other GATOR subcomplex in this amino acid-sensing branch of the TORC1 pathway.[12] [RRAGC_HUMAN] Guanine nucleotide-binding protein forming heterodimeric Rag complexes required for the amino acid-induced relocalization of mTORC1 to the lysosomes and its subsequent activation by the GTPase RHEB. This is a crucial step in the activation of the TOR signaling cascade by amino acids.[13]

References

  1. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  2. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  3. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  4. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr , 8. PMID:20381137 doi:10.1016/j.cell.2010.02.024
  5. Deng L, Jiang C, Chen L, Jin J, Wei J, Zhao L, Chen M, Pan W, Xu Y, Chu H, Wang X, Ge X, Li D, Liao L, Liu M, Li L, Wang P. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol Cell. 2015 Jun 4;58(5):804-18. doi: 10.1016/j.molcel.2015.03.033. Epub 2015, Apr 30. PMID:25936802 doi:http://dx.doi.org/10.1016/j.molcel.2015.03.033
  6. Li Y, Kang J, Horwitz MS. Interaction of an adenovirus 14.7-kilodalton protein inhibitor of tumor necrosis factor alpha cytolysis with a new member of the GTPase superfamily of signal transducers. J Virol. 1997 Feb;71(2):1576-82. PMID:8995684
  7. Hirose E, Nakashima N, Sekiguchi T, Nishimoto T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J Cell Sci. 1998 Jan;111 ( Pt 1):11-21. PMID:9394008
  8. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  9. Kurata A, Katayama R, Watanabe T, Tsuruo T, Fujita N. TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling. Cancer Sci. 2008 Sep;99(9):1827-34. Epub 2008 Jul 4. PMID:18616680 doi:http://dx.doi.org/CAS874
  10. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  11. Parmigiani A, Nourbakhsh A, Ding B, Wang W, Kim YC, Akopiants K, Guan KL, Karin M, Budanov AV. Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep. 2014 Nov 20;9(4):1281-91. doi: 10.1016/j.celrep.2014.10.019. PMID:25457612 doi:http://dx.doi.org/10.1016/j.celrep.2014.10.019
  12. Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013 May 31;340(6136):1100-6. doi: 10.1126/science.1232044. PMID:23723238 doi:http://dx.doi.org/10.1126/science.1232044
  13. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr , 8. PMID:20381137 doi:10.1016/j.cell.2010.02.024

6ces, resolution 4.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA