5no7
Crystal Structure of a Xylan-active Lytic Polysaccharide Monooxygenase from Pycnoporus coccineus.Crystal Structure of a Xylan-active Lytic Polysaccharide Monooxygenase from Pycnoporus coccineus.
Structural highlights
Publication Abstract from PubMedWood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we describe a new family of fungal lytic polysaccharide monooxygenases (LPMOs) prevalent among white-rot and brown-rot basidiomycetes that is active on xylans-a recalcitrant polysaccharide abundant in wood biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus substantially increase the efficiency of wood saccharification through oxidative cleavage of highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity advances our knowledge on the degradation of woody biomass in nature and offers an innovative solution for improving enzyme cocktails for biorefinery applications. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.,Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspoul F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henrissat B, Berrin JG Nat Chem Biol. 2018 Jan 29. pii: nchembio.2558. doi: 10.1038/nchembio.2558. PMID:29377002[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|