1d8f
CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A PIPERAZINE BASED INHIBITOR.CRYSTAL STRUCTURE OF MMP3 COMPLEXED WITH A PIPERAZINE BASED INHIBITOR.
Structural highlights
Disease[MMP3_HUMAN] Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:614466]. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.[1] [2] Function[MMP3_HUMAN] Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedA new generation of cyclic matrix metalloproteinase (MMP) inhibitors derived from dl-piperazinecarboxylic acid has been described. The design involves: incorporation of hydroxamic acid as the bidentate chelating agent for catalytic Zn(2+), placement of a sulfonamide group at the 1N-position of the piperazine ring to fill the S1' pocket of the enzyme, and finally attachment of diverse functional groups at the 4N-position to optimize potency and peroral absorption. A unique combination of all three elements produced inhibitor 20 with high affinity for MMPs 1, 3, 9, and 13 (24, 18, 1.9, and 1.3 nM, respectively). X-ray crystallography data obtained for MMP-3 cocrystallized with 20 gave detailed information on key binding interactions defining an overall scaffold geometry for piperazine-based MMP inhibitors. Design and synthesis of piperazine-based matrix metalloproteinase inhibitors.,Cheng M, De B, Pikul S, Almstead NG, Natchus MG, Anastasio MV, McPhail SJ, Snider CE, Taiwo YO, Chen L, Dunaway CM, Gu F, Dowty ME, Mieling GE, Janusz MJ, Wang-Weigand S J Med Chem. 2000 Feb 10;43(3):369-80. PMID:10669564[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|