Crystal structure of a CDK6/Vcyclin complex with inhibitor boundCrystal structure of a CDK6/Vcyclin complex with inhibitor bound

Structural highlights

4tth is a 2 chain structure with sequence from Human and Herpesvirus saimiri. This structure supersedes the now removed PDB entry 4p41. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:72, ECLF2 (Herpesvirus saimiri), CDK6, CDKN6 (HUMAN)
Activity:Cyclin-dependent kinase, with EC number 2.7.11.22
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[CGH2_SHV21] May be highly relevant to the process of cellular transformation and rapid T-cell proliferation effected by HVS during latent infections of T-cells in susceptible hosts. [CDK6_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle and differentiation; promotes G1/S transition. Phosphorylates pRB/RB1 and NPM1. Interacts with D-type G1 cyclins during interphase at G1 to form a pRB/RB1 kinase and controls the entrance into the cell cycle. Involved in initiation and maintenance of cell cycle exit during cell differentiation; prevents cell proliferation and regulates negatively cell differentiation, but is required for the proliferation of specific cell types (e.g. erythroid and hematopoietic cells). Essential for cell proliferation within the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricles. Required during thymocyte development. Promotes the production of newborn neurons, probably by modulating G1 length. Promotes, at least in astrocytes, changes in patterns of gene expression, changes in the actin cytoskeleton including loss of stress fibers, and enhanced motility during cell differentiation. Prevents myeloid differentiation by interfering with RUNX1 and reducing its transcription transactivation activity, but promotes proliferation of normal myeloid progenitors. Delays senescence. Promotes the proliferation of beta-cells in pancreatic islets of Langerhans.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Publication Abstract from PubMed

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.

Discovery of AMG 925, a FLT3 and CDK4 Dual Kinase Inhibitor with Preferential Affinity for the Activated State of FLT3.,Li Z, Wang X, Eksterowicz J, Gribble MW Jr, Alba GQ, Ayres M, Carlson TJ, Chen A, Chen X, Cho R, Connors RV, Degraffenreid M, Deignan JT, Duquette J, Fan P, Fisher B, Fu J, Huard JN, Kaizerman J, Keegan KS, Li C, Li K, Li Y, Liang L, Liu W, Lively SE, Lo MC, Ma J, McMinn DL, Mihalic JT, Modi K, Ngo R, Pattabiraman K, Piper DE, Queva C, Ragains ML, Suchomel J, Thibault S, Walker N, Wang X, Wang Z, Wanska M, Wehn PM, Weidner MF, Zhang AJ, Zhao X, Kamb A, Wickramasinghe D, Dai K, McGee LR, Medina JC J Med Chem. 2014 Apr 24;57(8):3430-49. doi: 10.1021/jm500118j. Epub 2014 Apr 2. PMID:24641103[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Meyerson M, Harlow E. Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Mol Cell Biol. 1994 Mar;14(3):2077-86. PMID:8114739
  2. Matushansky I, Radparvar F, Skoultchi AI. CDK6 blocks differentiation: coupling cell proliferation to the block to differentiation in leukemic cells. Oncogene. 2003 Jul 3;22(27):4143-9. PMID:12833137 doi:10.1038/sj.onc.1206484
  3. Lucas JJ, Domenico J, Gelfand EW. Cyclin-dependent kinase 6 inhibits proliferation of human mammary epithelial cells. Mol Cancer Res. 2004 Feb;2(2):105-14. PMID:14985467
  4. Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K, Okayama H. Bone morphogenetic protein 2-induced osteoblast differentiation requires Smad-mediated down-regulation of Cdk6. Mol Cell Biol. 2004 Aug;24(15):6560-8. PMID:15254224 doi:10.1128/MCB.24.15.6560-6568.2004
  5. Takaki T, Fukasawa K, Suzuki-Takahashi I, Semba K, Kitagawa M, Taya Y, Hirai H. Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclin-dependent kinases, Cdk4 and Cdk6, in vitro. J Biochem. 2005 Mar;137(3):381-6. PMID:15809340 doi:10.1093/jb/mvi050
  6. Fujimoto T, Anderson K, Jacobsen SE, Nishikawa SI, Nerlov C. Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J. 2007 May 2;26(9):2361-70. Epub 2007 Apr 12. PMID:17431401 doi:10.1038/sj.emboj.7601675
  7. Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, Brookes S, Peters G. CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol. 2007 Jun;27(12):4273-82. Epub 2007 Apr 9. PMID:17420273 doi:10.1128/MCB.02286-06
  8. Fiaschi-Taesch NM, Salim F, Kleinberger J, Troxell R, Cozar-Castellano I, Selk K, Cherok E, Takane KK, Scott DK, Stewart AF. Induction of human beta-cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes. 2010 Aug;59(8):1926-36. doi: 10.2337/db09-1776. PMID:20668294 doi:10.2337/db09-1776
  9. Sarek G, Jarviluoma A, Moore HM, Tojkander S, Vartia S, Biberfeld P, Laiho M, Ojala PM. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog. 2010 Mar 19;6(3):e1000818. doi: 10.1371/journal.ppat.1000818. PMID:20333249 doi:10.1371/journal.ppat.1000818
  10. Li Z, Wang X, Eksterowicz J, Gribble MW Jr, Alba GQ, Ayres M, Carlson TJ, Chen A, Chen X, Cho R, Connors RV, Degraffenreid M, Deignan JT, Duquette J, Fan P, Fisher B, Fu J, Huard JN, Kaizerman J, Keegan KS, Li C, Li K, Li Y, Liang L, Liu W, Lively SE, Lo MC, Ma J, McMinn DL, Mihalic JT, Modi K, Ngo R, Pattabiraman K, Piper DE, Queva C, Ragains ML, Suchomel J, Thibault S, Walker N, Wang X, Wang Z, Wanska M, Wehn PM, Weidner MF, Zhang AJ, Zhao X, Kamb A, Wickramasinghe D, Dai K, McGee LR, Medina JC. Discovery of AMG 925, a FLT3 and CDK4 Dual Kinase Inhibitor with Preferential Affinity for the Activated State of FLT3. J Med Chem. 2014 Apr 24;57(8):3430-49. doi: 10.1021/jm500118j. Epub 2014 Apr 2. PMID:24641103 doi:http://dx.doi.org/10.1021/jm500118j

4tth, resolution 2.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA