3nya

From Proteopedia
Revision as of 05:29, 16 November 2017 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal structure of the human beta2 adrenergic receptor in complex with the neutral antagonist alprenololCrystal structure of the human beta2 adrenergic receptor in complex with the neutral antagonist alprenolol

Structural highlights

3nya is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:ADRB2, ADRB2R, B2AR, E (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ADRB2_HUMAN] Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the beta(2) adrenergic receptor (beta(2)AR) is one of the most extensively studied. Previously, the X-ray crystal structure of beta(2)AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered beta(2)AR construct in complex with two inverse agonists: ICI 118,551 (2.8 A), a recently described compound (2.8 A) (Kolb et al, 2009), and the antagonist alprenolol (3.1 A). The structures show the same overall fold observed for the previous beta(2)AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with beta(2)AR. Furthermore, receptor ligand cross-docking experiments revealed that a single beta(2)AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.

Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography.,Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC J Am Chem Soc. 2010 Aug 25;132(33):11443-5. PMID:20669948[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC. Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc. 2010 Aug 25;132(33):11443-5. PMID:20669948 doi:10.1021/ja105108q

3nya, resolution 3.16Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA