Crystal Structure of PRP8 core domain IVCrystal Structure of PRP8 core domain IV

Structural highlights

3enb is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:PRPF8, PRPC8 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[PRP8_HUMAN] Defects in PRPF8 are the cause of retinitis pigmentosa type 13 (RP13) [MIM:600059]. RP leads to degeneration of retinal photoreceptor cells. Patients typically have night vision blindness and loss of midperipheral visual field. As their condition progresses, they lose their far peripheral visual field and eventually central vision as well. RP13 inheritance is autosomal dominant.[1] [2] [:][3] [4]

Function

[PRP8_HUMAN] Central component of the spliceosome, which may play a role in aligning the pre-mRNA 5'- and 3'-exons for ligation. Interacts with U5 snRNA, and with pre-mRNA 5'-splice sites in B spliceosomes and 3'-splice sites in C spliceosomes.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The spliceosome is a complex ribonucleoprotein (RNP) particle containing five RNAs and more than 100 associated proteins. One of these proteins, PRP8, has been shown to interact directly with the splice sites and branch region of precursor-mRNAs (pre-mRNAs) and spliceosomal RNAs associated with catalysis of the two steps of splicing. The 1.85-A X-ray structure of the core of PRP8 domain IV, implicated in key spliceosomal interactions, reveals a bipartite structure that includes the presence of an RNase H fold linked to a five-helix assembly. Analysis of mutant yeast alleles and cross-linking results in the context of this structure, coupled with RNA binding studies, suggests that domain IV forms a surface that interacts directly with the RNA structures at the catalytic core of the spliceosome.

Structural elucidation of a PRP8 core domain from the heart of the spliceosome.,Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, Macmillan AM Nat Struct Mol Biol. 2008 Nov;15(11):1199-205. Epub 2008 Oct 2. PMID:18836455[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Pena V, Liu S, Bujnicki JM, Luhrmann R, Wahl MC. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell. 2007 Feb 23;25(4):615-24. PMID:17317632 doi:10.1016/j.molcel.2007.01.023
  2. McKie AB, McHale JC, Keen TJ, Tarttelin EE, Goliath R, van Lith-Verhoeven JJ, Greenberg J, Ramesar RS, Hoyng CB, Cremers FP, Mackey DA, Bhattacharya SS, Bird AC, Markham AF, Inglehearn CF. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum Mol Genet. 2001 Jul 15;10(15):1555-62. PMID:11468273
  3. van Lith-Verhoeven JJ, van der Velde-Visser SD, Sohocki MM, Deutman AF, Brink HM, Cremers FP, Hoyng CB. Clinical characterization, linkage analysis, and PRPC8 mutation analysis of a family with autosomal dominant retinitis pigmentosa type 13 (RP13). Ophthalmic Genet. 2002 Mar;23(1):1-12. PMID:11910553
  4. Martinez-Gimeno M, Gamundi MJ, Hernan I, Maseras M, Milla E, Ayuso C, Garcia-Sandoval B, Beneyto M, Vilela C, Baiget M, Antinolo G, Carballo M. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2003 May;44(5):2171-7. PMID:12714658
  5. Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, Macmillan AM. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol. 2008 Nov;15(11):1199-205. Epub 2008 Oct 2. PMID:18836455 doi:10.1038/nsmb.1505

3enb, resolution 1.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA