1hfq

From Proteopedia
Revision as of 07:35, 21 September 2017 by OCA (talk | contribs)
Jump to navigation Jump to search

COMPARISON OF TERNARY CRYSTAL COMPLEXES OF HUMAN DIHYDROFOLATE REDUCTASE WITH NADPH AND A CLASSICAL ANTITUMOR FUROPYRIMDINECOMPARISON OF TERNARY CRYSTAL COMPLEXES OF HUMAN DIHYDROFOLATE REDUCTASE WITH NADPH AND A CLASSICAL ANTITUMOR FUROPYRIMDINE

Structural highlights

1hfq is a 1 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Dihydrofolate reductase, with EC number 1.5.1.3
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

[DYR_HUMAN] Defects in DHFR are the cause of megaloblastic anemia due to dihydrofolate reductase deficiency (DHFRD) [MIM:613839]. DHFRD is an inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency. Clinical features include variable neurologic symptoms, ranging from severe developmental delay and generalized seizures in infancy, to childhood absence epilepsy with learning difficulties, to lack of symptoms.[1] [2]

Function

[DYR_HUMAN] Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFRL1.[3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The novel furopyrimidine, N-[4-[(2,4-diaminofuro[2,3-d]pyrimidin-5-yl)-methyl]-methylamino] -benzoyl]-L-glutamate (MTXO), a classical antifolate with weak antitumor activity compared with methotrexate (MTX), has been studied as inhibitorcofactor ternary crystal complexes with recombinant Phe-31 to Ser (F31S) and Phe-31 to Gly (F31G) variant human dihydrofolate reductase (hDHFR). Kinetic data show that the binding affinity of MTXO is significantly weaker for the variant hDHFR enzyme than for the wild type enzyme. Structural data for the Phe-31 variants, along with wild type hDHFR, provide the first direct comparison of the binding interactions of a single antifolate in a family of variant hDHFR. These ternary hDHFR complexes crystallize in the rhombohedral space group R3, isomorphous to that reported for wild type hDHFR MTXO-NADPH ternary complex. MTXO binds with its 2,4-diaminofuropyrimidine ring interacting with Glu-30 in hDHFR. The greatest change on modification of the side chain at position 31 is loss of hydrophobic contacts to the inhibitor, which results in the significant decrease in binding affinity of MTXO for the Phe-31 variants. The presence of the 6-5 furopyrimidine ring instead of the 6-6 pteridine ring causes a different bridge conformation compared with MTX, and in the case of the wild type MTXO complex also results in weaker hydrophobic contacts to Phe-31 than observed for MTXT. For the design of antitumor agents related to MTXO, increasing the bridge of MTXO from two to three or four atoms should provide increased DHFR inhibitory potency and antitumor activity.

Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine.,Cody V, Galitsky N, Luft JR, Pangborn W, Blakley RL, Gangjee A Anticancer Drug Des. 1998 Jun;13(4):307-15. PMID:9627670[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Banka S, Blom HJ, Walter J, Aziz M, Urquhart J, Clouthier CM, Rice GI, de Brouwer AP, Hilton E, Vassallo G, Will A, Smith DE, Smulders YM, Wevers RA, Steinfeld R, Heales S, Crow YJ, Pelletier JN, Jones S, Newman WG. Identification and characterization of an inborn error of metabolism caused by dihydrofolate reductase deficiency. Am J Hum Genet. 2011 Feb 11;88(2):216-25. doi: 10.1016/j.ajhg.2011.01.004. PMID:21310276 doi:10.1016/j.ajhg.2011.01.004
  2. Cario H, Smith DE, Blom H, Blau N, Bode H, Holzmann K, Pannicke U, Hopfner KP, Rump EM, Ayric Z, Kohne E, Debatin KM, Smulders Y, Schwarz K. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease. Am J Hum Genet. 2011 Feb 11;88(2):226-31. doi: 10.1016/j.ajhg.2011.01.007. PMID:21310277 doi:10.1016/j.ajhg.2011.01.007
  3. Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15163-8. doi:, 10.1073/pnas.1103623108. Epub 2011 Aug 26. PMID:21876188 doi:10.1073/pnas.1103623108
  4. Klon AE, Heroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW. Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution. J Mol Biol. 2002 Jul 12;320(3):677-93. PMID:12096917
  5. Cody V, Galitsky N, Luft JR, Pangborn W, Blakley RL, Gangjee A. Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine. Anticancer Drug Des. 1998 Jun;13(4):307-15. PMID:9627670

1hfq, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA