5uvc
Design, Synthesis, and Evaluation of the First Selective and Potent G-protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart FailureDesign, Synthesis, and Evaluation of the First Selective and Potent G-protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure
Structural highlights
Function[ARBK1_HUMAN] Specifically phosphorylates the agonist-occupied form of the beta-adrenergic and closely related receptors, probably inducing a desensitization of them. Key regulator of LPAR1 signaling. Competes with RALA for binding to LPAR1 thus affecting the signaling properties of the receptor. Desensitizes LPAR1 and LPAR2 in a phosphorylation-independent manner.[1] Publication Abstract from PubMedA novel class of therapeutic drug candidates for heart failure, highly potent and selective GRK2 inhibitors, exhibit potentiation of beta-adrenergic signaling in vitro studies. Hydrazone derivative 5 and 1,2,4-triazole derivative 24a were identified as hit compounds by HTS. New scaffold generation and SAR studies of all parts resulted in a 4-methyl-1,2,4-triazole derivative with an N-benzylcarboxamide moiety with highly potent activity toward GRK2 and selectivity over other kinases. In terms of subtype selectivity, these compounds showed enough selectivity against GRK1, 5, 6, and 7 with almost equipotent inhibition to GRK3. Our medicinal chemistry efforts led to the discovery of 115h (GRK2 IC50 = 18 nM), which was obtained the cocrystal structure with human GRK2 and an inhibitor of GRK2 that potentiates beta-adrenergic receptor (betaAR)-mediated cAMP accumulation and prevents internalization of betaARs in beta2AR-expressing HEK293 cells treated with isoproterenol. Therefore, 115h appears to be a novel class of therapeutic for heart failure treatment. Design, Synthesis, and Evaluation of the Highly Selective and Potent G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitor for the Potential Treatment of Heart Failure.,Okawa T, Aramaki Y, Yamamoto M, Kobayashi T, Fukumoto S, Toyoda Y, Henta T, Hata A, Ikeda S, Kaneko M, Hoffman ID, Sang BC, Zou H, Kawamoto T J Med Chem. 2017 Aug 24;60(16):6942-6990. doi: 10.1021/acs.jmedchem.7b00443. Epub, 2017 Aug 3. PMID:28699740[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|