4k0y

From Proteopedia
Revision as of 19:26, 5 August 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

Structure of PIM-1 kinase bound to N-(4-fluorophenyl)-7-hydroxy-5-(piperidin-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamideStructure of PIM-1 kinase bound to N-(4-fluorophenyl)-7-hydroxy-5-(piperidin-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamide

Structural highlights

4k0y is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:PIM-1, PIM1 (HUMAN)
Activity:Non-specific serine/threonine protein kinase, with EC number 2.7.11.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[PIM1_HUMAN] Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.[1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1 kinase to guide analog design, we were able to improve potency against all three Pim isoforms including a significant 10,000-fold gain against Pim-2. Compound 17 is a novel lead with low picomolar potency on all three Pim kinase isoforms.

Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design.,Wang X, Magnuson S, Pastor R, Fan E, Hu H, Tsui V, Deng W, Murray J, Steffek M, Wallweber H, Moffat J, Drummond J, Chan G, Harstad E, Ebens AJ Bioorg Med Chem Lett. 2013 Jun 1;23(11):3149-53. doi: 10.1016/j.bmcl.2013.04.020., Epub 2013 Apr 17. PMID:23623490[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991 Mar;10(3):655-64. PMID:1825810
  2. Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett. 2000 Feb 4;467(1):17-21. PMID:10664448
  3. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002 Dec 16;1593(1):45-55. PMID:12431783
  4. Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 2004 Nov 15;173(10):6409-17. PMID:15528381
  5. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006 Mar;38(3):430-43. Epub 2005 Nov 8. PMID:16356754 doi:10.1016/j.biocel.2005.10.010
  6. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008 Jul 1;68(13):5076-85. doi: 10.1158/0008-5472.CAN-08-0634. PMID:18593906 doi:10.1158/0008-5472.CAN-08-0634
  7. Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene. 2009 Dec 3;28(48):4261-71. doi: 10.1038/onc.2009.276. Epub 2009 Sep 14. PMID:19749799 doi:10.1038/onc.2009.276
  8. Wang X, Magnuson S, Pastor R, Fan E, Hu H, Tsui V, Deng W, Murray J, Steffek M, Wallweber H, Moffat J, Drummond J, Chan G, Harstad E, Ebens AJ. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg Med Chem Lett. 2013 Jun 1;23(11):3149-53. doi: 10.1016/j.bmcl.2013.04.020., Epub 2013 Apr 17. PMID:23623490 doi:10.1016/j.bmcl.2013.04.020

4k0y, resolution 1.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA