3koo

From Proteopedia
Revision as of 19:05, 5 August 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure of soluble epoxide HydrolaseCrystal Structure of soluble epoxide Hydrolase

Structural highlights

3koo is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:EPHX2 (HUMAN)
Activity:Soluble epoxide hydrolase, with EC number 3.3.2.10
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[HYES_HUMAN] Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid, 12-phosphonooxy-octadec-9E-enoic acid, and p-nitrophenyl phospate.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Inhibition of sEH is hypothesized to lead to an increase in epoxyeicosatrienoic acids resulting in the potentiation of their anti-inflammatory and vasodilatory effects. In an effort to explore sEH inhibition as an avenue for the development of vasodilatory and cardio- or renal-protective agents, a lead identified through high-throughput screening was optimized, guided by the determination of a solid state co-structure with sEH. Replacement of potential toxicophores was followed by optimization of cell-based potency and ADME properties to provide a new class of functionally potent sEH inhibitors with attractive in vitro metabolic profiles and high and sustained plasma exposures after oral administration in the rat.

Optimization of piperidyl-ureas as inhibitors of soluble epoxide hydrolase.,Eldrup AB, Soleymanzadeh F, Farrow NA, Kukulka A, De Lombaert S Bioorg Med Chem Lett. 2010 Jan 15;20(2):571-5. Epub 2009 Nov 22. PMID:19969453[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cronin A, Mowbray S, Durk H, Homburg S, Fleming I, Fisslthaler B, Oesch F, Arand M. The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1552-7. Epub 2003 Feb 6. PMID:12574508 doi:10.1073/pnas.0437829100
  2. Newman JW, Morisseau C, Harris TR, Hammock BD. The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1558-63. Epub 2003 Feb 6. PMID:12574510 doi:10.1073/pnas.0437724100
  3. Eldrup AB, Soleymanzadeh F, Farrow NA, Kukulka A, De Lombaert S. Optimization of piperidyl-ureas as inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett. 2010 Jan 15;20(2):571-5. Epub 2009 Nov 22. PMID:19969453 doi:10.1016/j.bmcl.2009.11.091

3koo, resolution 2.79Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA