3wt6

From Proteopedia
Revision as of 09:31, 5 August 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

A mixed population of antagonist and agonist binding conformers in a single crystal explains partial agonism against vitamin D receptor: Active vitamin D analogues with 22R-alkyl groupA mixed population of antagonist and agonist binding conformers in a single crystal explains partial agonism against vitamin D receptor: Active vitamin D analogues with 22R-alkyl group

Structural highlights

3wt6 is a 2 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[VDR_RAT] Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Regulates transcription of hormone sensitive genes via its association with the WINAC complex, a chromatin-remodeling complex. Recruited to promoters via its interaction with the WINAC complex subunit BAZ1B/WSTF, which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.[1] [MED1_HUMAN] Component of the Mediator complex, a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Mediator functions as a bridge to convey information from gene-specific regulatory proteins to the basal RNA polymerase II transcription machinery. Mediator is recruited to promoters by direct interactions with regulatory proteins and serves as a scaffold for the assembly of a functional preinitiation complex with RNA polymerase II and the general transcription factors.[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Publication Abstract from PubMed

We are continuing to study the structural basis of vitamin D receptor (VDR) agonism and antagonism by using 22S-alkyl vitamin D analogues. Here we report the synthesis and biological evaluation of 22R-alkyl analogues and the X-ray crystallographic analysis of vitamin D receptor ligand-binding domain (VDR-LBD) complexed with a 22R-analogue. VDR-LBD complexed with the partial agonist 8a showed that 8a binds to VDR-LBD with two conformations, one of which is the antagonist/VDR-LBD complex structure and the other is the agonist/VDR-LBD complex structure. The results indicate that the partial agonist activity of 8a depends on the sum of antagonistic and agonistic activities caused by the antagonist and agonist binding conformers, respectively. The structural basis observed here must be applicable to the partial agonism of other ligand-dependent nuclear receptors. This is the first report describing the trapping of a conformational subset of the ligand and the nuclear receptor in a single crystal.

A Mixed Population of Antagonist and Agonist Binding Conformers in a Single Crystal Explains Partial Agonism against Vitamin D Receptor: Active Vitamin D Analogues with 22R-Alkyl Group.,Anami Y, Itoh T, Egawa D, Yoshimoto N, Yamamoto K J Med Chem. 2014 May 22;57(10):4351-67. doi: 10.1021/jm500392t. Epub 2014 Apr 29. PMID:24742174[13]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Vanhooke JL, Tadi BP, Benning MM, Plum LA, DeLuca HF. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007 Apr 15;460(2):161-5. Epub 2006 Dec 12. PMID:17227670 doi:10.1016/j.abb.2006.11.029
  2. Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG. The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7939-44. PMID:9653119
  3. Zhang J, Fondell JD. Identification of mouse TRAP100: a transcriptional coregulatory factor for thyroid hormone and vitamin D receptors. Mol Endocrinol. 1999 Jul;13(7):1130-40. PMID:10406464
  4. Wang Q, Sharma D, Ren Y, Fondell JD. A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression. J Biol Chem. 2002 Nov 8;277(45):42852-8. Epub 2002 Sep 5. PMID:12218053 doi:10.1074/jbc.M206061200
  5. Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM, Roeder RG. Transcription coactivator TRAP220 is required for PPAR gamma 2-stimulated adipogenesis. Nature. 2002 May 30;417(6888):563-7. PMID:12037571 doi:10.1038/417563a
  6. Kang YK, Guermah M, Yuan CX, Roeder RG. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):2642-7. Epub 2002 Feb 26. PMID:11867769 doi:10.1073/pnas.261715899
  7. Coulthard VH, Matsuda S, Heery DM. An extended LXXLL motif sequence determines the nuclear receptor binding specificity of TRAP220. J Biol Chem. 2003 Mar 28;278(13):10942-51. Epub 2003 Jan 29. PMID:12556447 doi:10.1074/jbc.M212950200
  8. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol Cell. 2003 Nov;12(5):1137-49. PMID:14636573
  9. Wu Q, Burghardt R, Safe S. Vitamin D-interacting protein 205 (DRIP205) coactivation of estrogen receptor alpha (ERalpha) involves multiple domains of both proteins. J Biol Chem. 2004 Dec 17;279(51):53602-12. Epub 2004 Oct 5. PMID:15471764 doi:10.1074/jbc.M409778200
  10. Malik S, Guermah M, Yuan CX, Wu W, Yamamura S, Roeder RG. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors. Mol Cell Biol. 2004 Sep;24(18):8244-54. PMID:15340084 doi:10.1128/MCB.24.18.8244-8254.2004
  11. Zhang X, Krutchinsky A, Fukuda A, Chen W, Yamamura S, Chait BT, Roeder RG. MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol Cell. 2005 Jul 1;19(1):89-100. PMID:15989967 doi:10.1016/j.molcel.2005.05.015
  12. Udayakumar TS, Belakavadi M, Choi KH, Pandey PK, Fondell JD. Regulation of Aurora-A kinase gene expression via GABP recruitment of TRAP220/MED1. J Biol Chem. 2006 May 26;281(21):14691-9. Epub 2006 Mar 30. PMID:16574658 doi:M600163200
  13. Anami Y, Itoh T, Egawa D, Yoshimoto N, Yamamoto K. A Mixed Population of Antagonist and Agonist Binding Conformers in a Single Crystal Explains Partial Agonism against Vitamin D Receptor: Active Vitamin D Analogues with 22R-Alkyl Group. J Med Chem. 2014 May 22;57(10):4351-67. doi: 10.1021/jm500392t. Epub 2014 Apr 29. PMID:24742174 doi:http://dx.doi.org/10.1021/jm500392t

3wt6, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA