3d3d

From Proteopedia
Revision as of 05:52, 5 August 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

Bacteriophage lambda lysozyme complexed with a chitohexasaccharideBacteriophage lambda lysozyme complexed with a chitohexasaccharide

Structural highlights

3d3d is a 2 chain structure with sequence from Bacteriophage lambda. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:R (Bacteriophage lambda)
Activity:Lysozyme, with EC number 3.2.1.17
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[LYS_LAMBD] Essential for lysis of bacterial cell wall, by showing cell wall hydrolyzing activity. Acts as a transglycosylase. Cleaves glycosidic bonds between the C1 of N-acetyl muramic acids (NAM) and C4 of N-acetyl glucosamines (NAG) of the peptidoglycan of the bacterial walls.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The three-dimensional structure of the lytic transglycosylase from bacteriophage lambda, also known as bacteriophage lambda lysozyme, complexed to the hexasaccharide inhibitor, hexa-N-acetylchitohexaose, has been determined by X-ray crystallography at 2.6 A resolution. The unit cell contains two molecules of the lytic transglycosylase with two hexasaccharides bound. Each enzyme molecule is found to interact with four N-acetylglucosamine units from one hexasaccharide (subsites A-D) and two N-acetylglucosamine units from the second hexasaccharide (subsites E and F), resulting in all six subsites of the active site of this enzyme being filled. This crystallographic structure, therefore, represents the first example of a lysozyme in which all subsites are occupied, and detailed protein-oligosaccharide interactions are now available for this bacteriophage lytic transglycosylase. Examination of the active site furthermore reveals that of the two residues that have been implicated in the reaction mechanism of most other c-type lysozymes (Glu35 and Asp52 in hen egg white lysozyme), only a homologous Glu residue is present. The lambda lytic transglycosylase is therefore functionally closely related to the Escherichia coli Slt70 and Slt35 lytic transglycosylases and goose egg white lysozyme which also lack the catalytic aspartic acid.

Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose.,Leung AK, Duewel HS, Honek JF, Berghuis AM Biochemistry. 2001 May 15;40(19):5665-73. PMID:11341831[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Leung AK, Duewel HS, Honek JF, Berghuis AM. Crystal structure of the lytic transglycosylase from bacteriophage lambda in complex with hexa-N-acetylchitohexaose. Biochemistry. 2001 May 15;40(19):5665-73. PMID:11341831

3d3d, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA