4whv

From Proteopedia
Revision as of 07:54, 11 May 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

E3 ubiquitin-protein ligase RNF8 in complex with Ubiquitin-conjugating enzyme E2 N and Polyubiquitin-BE3 ubiquitin-protein ligase RNF8 in complex with Ubiquitin-conjugating enzyme E2 N and Polyubiquitin-B

Structural highlights

4whv is a 12 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Ubiquitin--protein ligase, with EC number 6.3.2.19
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[UBE2N_HUMAN] The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non-canonical 'Lys-63'-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the 'Lys-63'-linked poly-ubiquitination of PCNA upon genotoxic stress, which is required for DNA repair. Appears to act together with E3 ligase RNF5 in the 'Lys-63'-linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD. Promotes TRIM5 capsid-specific restriction activity and the UBE2V1-UBE2N heterodimer acts in concert with TRIM5 to generate 'Lys-63'-linked polyubiquitin chains which activate the MAP3K7/TAK1 complex which in turn results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes (By similarity).[1] [2] [3] [4] [5] [UBB_HUMAN] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.[6] [7] [RNF8_HUMAN] E3 ubiquitin-protein ligase that plays a key role in DNA damage signaling via 2 distinct roles: by mediating the 'Lys-63'-linked ubiquitination of histones H2A and H2AX and promoting the recruitment of DNA repair proteins at double-strand breaks (DSBs) sites, and by catalyzing 'Lys-48'-linked ubiquitination to remove target proteins from DNA damage sites. Following DNA DSBs, it is recruited to the sites of damage by ATM-phosphorylated MDC1 and catalyzes the 'Lys-63'-linked ubiquitination of histones H2A and H2AX, thereby promoting the formation of TP53BP1 and BRCA1 ionizing radiation-induced foci (IRIF). Also controls the recruitment of UIMC1-BRCC3 (RAP80-BRCC36) and PAXIP1/PTIP to DNA damage sites. Also recruited at DNA interstrand cross-links (ICLs) sites and catalyzes 'Lys-63'-linked ubiquitination of histones H2A and H2AX, leading to recruitment of FAAP20/C1orf86 and Fanconi anemia (FA) complex, followed by interstrand cross-link repair. H2A ubiquitination also mediates the ATM-dependent transcriptional silencing at regions flanking DSBs in cis, a mechanism to avoid collision between transcription and repair intermediates. Promotes the formation of 'Lys-63'-linked polyubiquitin chains via interactions with the specific ubiquitin-conjugating UBE2N/UBC13 and ubiquitinates non-histone substrates such as PCNA. Substrates that are polyubiquitinated at 'Lys-63' are usually not targeted for degradation. Also catalyzes the formation of 'Lys-48'-linked polyubiquitin chains via interaction with the ubiquitin-conjugating UBE2L6/UBCH8, leading to degradation of substrate proteins such as CHEK2, JMJD2A/KDM4A and KU80/XRCC5: it is still unclear how the preference toward 'Lys-48'- versus 'Lys-63'-linked ubiquitination is regulated but it could be due to RNF8 ability to interact with specific E2 specific ligases. For instance, interaction with phosphorylated HERC2 promotes the association between RNF8 and UBE2N/UBC13 and favors the specific formation of 'Lys-63'-linked ubiquitin chains. Promotes non-homologous end joining (NHEJ) by promoting the 'Lys-48'-linked ubiquitination and degradation the of KU80/XRCC5. Following DNA damage, mediates the ubiquitination and degradation of JMJD2A/KDM4A in collaboration with RNF168, leading to unmask H4K20me2 mark and promote the recruitment of TP53BP1 at DNA damage sites. In addition to its function in damage signaling, also plays a role in higher-order chromatin structure by mediating extensive chromatin decondensation. Involved in the activation of ATM by promoting histone H2B ubiquitination, which indirectly triggers histone H4 'Lys-16' acetylation (H4K16ac), establishing a chromatin environment that promotes efficient activation of ATM kinase. Required in the testis, where it plays a role in the replacement of histones during spermatogenesis. At uncapped telomeres, promotes the joining of deprotected chromosome ends by inducing H2A ubiquitination and TP53BP1 recruitment, suggesting that it may enhance cancer development by aggraving telomere-induced genome instability in case of telomeric crisis. Promotes the assembly of RAD51 at DNA DSBs in the absence of BRCA1 and TP53BP1 Also involved in class switch recombination in immune system, via its role in regulation of DSBs repair. May be required for proper exit from mitosis after spindle checkpoint activation and may regulate cytokinesis. May play a role in the regulation of RXRA-mediated transcriptional activity. Not involved in RXRA ubiquitination by UBE2E2.[8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]

Publication Abstract from PubMed

DNA double-strand break (DSB) responses depend on the sequential actions of the E3 ubiquitin ligases RNF8 and RNF168 plus E2 ubiquitin-conjugating enzyme Ubc13 to specifically generate histone K63-linked ubiquitin chains in DSB signaling. Here we defined the activated RNF8/Ubc13~Ub complex by X-ray crystallography and its functional solution conformations by X-ray scattering, as tested by separation-of-function mutations imaged in cells by immunofluorescence. The collective results show that the RING E3 RNF8 targets E2 Ubc13 to DSB sites and plays a critical role in damage signaling by stimulating polyubiquitination through modulating conformations of ubiquitin covalently linked to the Ubc13 active site. Structure-guided separation-of-function mutations show that the RNF8 E2-stimulating activity is essential for DSB signaling in mammalian cells and necessary for downstream recruitment of 53BP1 and BRCA1. Chromatin targeted RNF168 rescues 53BP1 recruitment involved in non-homologous end joining, but not BRCA1 recruitment for homologous recombination. These findings suggest an allosteric approach to targeting the ubiquitin-docking cleft at the E2:E3 interface for possible interventions in cancer and chronic inflammation, and moreover establish an independent RNF8 role in BRCA1 recruitment.

RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity that is Essential for DNA Double-Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment.,Hodge CD, Ismail IH, Edwards RA, Hura GL, Xiao AT, Tainer JA, Hendzel MJ, Glover JN J Biol Chem. 2016 Feb 22. pii: jbc.M116.715698. PMID:26903517[32]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Hofmann RM, Pickart CM. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell. 1999 Mar 5;96(5):645-53. PMID:10089880
  2. Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene. 2003 Oct 16;22(46):7101-7. PMID:14562038 doi:10.1038/sj.onc.1206831
  3. Tcherpakov M, Delaunay A, Toth J, Kadoya T, Petroski MD, Ronai ZA. Regulation of endoplasmic reticulum-associated degradation by RNF5-dependent ubiquitination of JNK-associated membrane protein (JAMP). J Biol Chem. 2009 May 1;284(18):12099-109. doi: 10.1074/jbc.M808222200. Epub 2009, Mar 6. PMID:19269966 doi:10.1074/jbc.M808222200
  4. David Y, Ziv T, Admon A, Navon A. The E2 ubiquitin conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem. 2010 Jan 8. PMID:20061386 doi:M109.089003
  5. Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature. 2011 Apr 21;472(7343):361-5. doi: 10.1038/nature09976. PMID:21512573 doi:10.1038/nature09976
  6. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell. 2006 Mar 17;21(6):737-48. PMID:16543144 doi:S1097-2765(06)00120-1
  7. Komander D. The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009 Oct;37(Pt 5):937-53. doi: 10.1042/BST0370937. PMID:19754430 doi:10.1042/BST0370937
  8. Ito K, Adachi S, Iwakami R, Yasuda H, Muto Y, Seki N, Okano Y. N-Terminally extended human ubiquitin-conjugating enzymes (E2s) mediate the ubiquitination of RING-finger proteins, ARA54 and RNF8. Eur J Biochem. 2001 May;268(9):2725-32. PMID:11322894
  9. Takano Y, Adachi S, Okuno M, Muto Y, Yoshioka T, Matsushima-Nishiwaki R, Tsurumi H, Ito K, Friedman SL, Moriwaki H, Kojima S, Okano Y. The RING finger protein, RNF8, interacts with retinoid X receptor alpha and enhances its transcription-stimulating activity. J Biol Chem. 2004 Apr 30;279(18):18926-34. Epub 2004 Feb 23. PMID:14981089 doi:http://dx.doi.org/10.1074/jbc.M309148200
  10. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell. 2007 Nov 30;131(5):887-900. Epub 2007 Nov 20. PMID:18001824 doi:http://dx.doi.org/10.1016/j.cell.2007.09.040
  11. Wang B, Elledge SJ. Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage. Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20759-63. Epub 2007 Dec 5. PMID:18077395 doi:http://dx.doi.org/0710061104
  12. Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 2007 Dec 7;318(5856):1637-40. Epub 2007 Nov 15. PMID:18006705 doi:http://dx.doi.org/10.1126/science.1150034
  13. Plans V, Guerra-Rebollo M, Thomson TM. Regulation of mitotic exit by the RNF8 ubiquitin ligase. Oncogene. 2008 Feb 28;27(10):1355-65. Epub 2007 Sep 3. PMID:17724460 doi:http://dx.doi.org/1210782
  14. Zhang S, Chea J, Meng X, Zhou Y, Lee EY, Lee MY. PCNA is ubiquitinated by RNF8. Cell Cycle. 2008 Nov 1;7(21):3399-404. PMID:18948756
  15. Sakasai R, Tibbetts R. RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage. J Biol Chem. 2008 May 16;283(20):13549-55. Epub 2008 Mar 12. PMID:18337245 doi:http://dx.doi.org/M710197200
  16. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009 Feb 6;136(3):420-34. doi: 10.1016/j.cell.2008.12.042. PMID:19203578 doi:10.1016/j.cell.2008.12.042
  17. Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen DH, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J, Lukas J, Lukas C. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell. 2009 Feb 6;136(3):435-46. doi: 10.1016/j.cell.2008.12.041. PMID:19203579 doi:10.1016/j.cell.2008.12.041
  18. Gong Z, Cho YW, Kim JE, Ge K, Chen J. Accumulation of Pax2 transactivation domain interaction protein (PTIP) at sites of DNA breaks via RNF8-dependent pathway is required for cell survival after DNA damage. J Biol Chem. 2009 Mar 13;284(11):7284-93. Epub 2009 Jan 5. PMID:19124460 doi:http://dx.doi.org/M809158200
  19. Wu J, Huen MS, Lu LY, Ye L, Dou Y, Ljungman M, Chen J, Yu X. Histone ubiquitination associates with BRCA1-dependent DNA damage response. Mol Cell Biol. 2009 Feb;29(3):849-60. doi: 10.1128/MCB.01302-08. Epub 2008 Nov, 17. PMID:19015238 doi:http://dx.doi.org/10.1128/MCB.01302-08
  20. Shao G, Lilli DR, Patterson-Fortin J, Coleman KA, Morrissey DE, Greenberg RA. The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3166-71. doi:, 10.1073/pnas.0807485106. Epub 2009 Feb 6. PMID:19202061 doi:http://dx.doi.org/10.1073/pnas.0807485106
  21. Shanbhag NM, Rafalska-Metcalf IU, Balane-Bolivar C, Janicki SM, Greenberg RA. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell. 2010 Jun 11;141(6):970-81. doi: 10.1016/j.cell.2010.04.038. PMID:20550933 doi:10.1016/j.cell.2010.04.038
  22. Sy SM, Jiang J, Dong SS, Lok GT, Wu J, Cai H, Yeung ES, Huang J, Chen J, Deng Y, Huen MS. Critical roles of ring finger protein RNF8 in replication stress responses. J Biol Chem. 2011 Jun 24;286(25):22355-61. doi: 10.1074/jbc.M111.232041. Epub, 2011 May 10. PMID:21558560 doi:http://dx.doi.org/10.1074/jbc.M111.232041
  23. Peuscher MH, Jacobs JJ. DNA-damage response and repair activities at uncapped telomeres depend on RNF8. Nat Cell Biol. 2011 Aug 21;13(9):1139-45. doi: 10.1038/ncb2326. PMID:21857671 doi:http://dx.doi.org/10.1038/ncb2326
  24. Nakada S, Yonamine RM, Matsuo K. RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1. Cancer Res. 2012 Oct 1;72(19):4974-83. doi: 10.1158/0008-5472.CAN-12-1057. Epub, 2012 Aug 3. PMID:22865450 doi:http://dx.doi.org/10.1158/0008-5472.CAN-12-1057
  25. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, Sixma TK, Richard S. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 2012 Feb 28;31(8):1865-78. doi: 10.1038/emboj.2012.47. PMID:22373579 doi:10.1038/emboj.2012.47
  26. Luijsterburg MS, Acs K, Ackermann L, Wiegant WW, Bekker-Jensen S, Larsen DH, Khanna KK, van Attikum H, Mailand N, Dantuma NP. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J. 2012 May 30;31(11):2511-27. doi: 10.1038/emboj.2012.104. Epub 2012 Apr, 24. PMID:22531782 doi:http://dx.doi.org/10.1038/emboj.2012.104
  27. Yan Z, Guo R, Paramasivam M, Shen W, Ling C, Fox D 3rd, Wang Y, Oostra AB, Kuehl J, Lee DY, Takata M, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Li L, Seidman MM, Wang W. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol Cell. 2012 Jul 13;47(1):61-75. doi: 10.1016/j.molcel.2012.05.026. Epub 2012, Jun 14. PMID:22705371 doi:10.1016/j.molcel.2012.05.026
  28. Feng L, Chen J. The E3 ligase RNF8 regulates KU80 removal and NHEJ repair. Nat Struct Mol Biol. 2012 Jan 22;19(2):201-6. doi: 10.1038/nsmb.2211. PMID:22266820 doi:http://dx.doi.org/10.1038/nsmb.2211
  29. Lok GT, Sy SM, Dong SS, Ching YP, Tsao SW, Thomson TM, Huen MS. Differential regulation of RNF8-mediated Lys48- and Lys63-based poly-ubiquitylation. Nucleic Acids Res. 2012 Jan;40(1):196-205. doi: 10.1093/nar/gkr655. Epub 2011 Sep, 12. PMID:21911360 doi:http://dx.doi.org/10.1093/nar/gkr655
  30. Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell. 2007 Nov 30;131(5):901-14. Epub 2007 Nov 20. PMID:18001825 doi:10.1016/j.cell.2007.09.041
  31. Mattiroli F, Vissers JH, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, Marteijn JA, Sixma TK. RNF168 Ubiquitinates K13-15 on H2A/H2AX to Drive DNA Damage Signaling. Cell. 2012 Sep 14;150(6):1182-95. doi: 10.1016/j.cell.2012.08.005. PMID:22980979 doi:10.1016/j.cell.2012.08.005
  32. Hodge CD, Ismail IH, Edwards RA, Hura GL, Xiao AT, Tainer JA, Hendzel MJ, Glover JN. RNF8 E3 Ubiquitin Ligase Stimulates Ubc13 E2 Conjugating Activity that is Essential for DNA Double-Strand Break Signaling and BRCA1 Tumor Suppressor Recruitment. J Biol Chem. 2016 Feb 22. pii: jbc.M116.715698. PMID:26903517 doi:http://dx.doi.org/10.1074/jbc.M116.715698

4whv, resolution 8.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA