Crystal structure of the fourth and fifth fibronectin F1 modules in complex with a fragment of staphylococcus aureus fnbpa-5Crystal structure of the fourth and fifth fibronectin F1 modules in complex with a fragment of staphylococcus aureus fnbpa-5

Structural highlights

2rl0 is a 12 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Gene:FN1 (HUMAN)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Disease

[FINC_HUMAN] Defects in FN1 are the cause of glomerulopathy with fibronectin deposits type 2 (GFND2) [MIM:601894]; also known as familial glomerular nephritis with fibronectin deposits or fibronectin glomerulopathy. GFND is a genetically heterogeneous autosomal dominant disorder characterized clinically by proteinuria, microscopic hematuria, and hypertension that leads to end-stage renal failure in the second to fifth decade of life.[1]

Function

[FINC_HUMAN] Fibronectins bind cell surfaces and various compounds including collagen, fibrin, heparin, DNA, and actin. Fibronectins are involved in cell adhesion, cell motility, opsonization, wound healing, and maintenance of cell shape.[2] [3] [4] [5] Anastellin binds fibronectin and induces fibril formation. This fibronectin polymer, named superfibronectin, exhibits enhanced adhesive properties. Both anastellin and superfibronectin inhibit tumor growth, angiogenesis and metastasis. Anastellin activates p38 MAPK and inhibits lysophospholipid signaling.[6] [7] [8] [9] [FNBA_STAA8] Possesses multiple, substituting fibronectin (Fn) binding regions, each capable of conferring adherence to both soluble and immobilized forms of Fn. This confers to S.aureus the ability to invade endothelial cells both in vivo and in vitro, without requiring additional factors, although in a slow and inefficient way through actin rearrangements in host cells. This invasion process is mediated by integrin alpha-5/beta-1. Promotes bacterial attachment to both soluble and immobilized forms of fibrinogen (Fg) by means of a unique binding site localized within the 17 C-terminal residues of the gamma-chain of human Fg. Both plasma proteins (Fn and Fg) function as a bridge between bacterium and host cell. Promotes attachment to immobilized elastin peptides in a dose-dependent and saturable manner. Promotes attachment to both full-length and segments of immobilized human tropoelastin at multiple sites in a dose and pH-dependent manner. Promotes adherence to and aggregation of activated platelets independently of other S.aureus surface molecules. Is a critical mediator implicated in the induction of experimental endocarditis in rats with catheter-induced aortic vegetations, promoting both colonization and persistence of the bacterium into the host.[10] [11] [12] [13] [14] [15] [16] [17]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Staphylococcus aureus can adhere to and invade endothelial cells by binding to the human protein fibronectin (Fn). FnBPA and FnBPB, cell wall-attached proteins from S. aureus, have multiple, intrinsically disordered, high-affinity binding repeats (FnBRs) for Fn. Here, 30 years after the first report of S. aureus/Fn interactions, we present four crystal structures that together comprise the structures of two complete FnBRs, each in complex with four of the N-terminal modules of Fn. Each approximately 40-residue FnBR forms antiparallel strands along the triple-stranded beta-sheets of four sequential F1 modules ((2-5)F1) with each FnBR/(2-5)F1 interface burying a total surface area of approximately 4,300 A(2). The structures reveal the roles of residues conserved between S. aureus and Streptococcus pyogenes FnBRs and show that there are few linker residues between FnBRs. The ability to form large intermolecular interfaces with relatively few residues has been proposed to be a feature of disordered proteins, and S. aureus/Fn interactions provide an unusual illustration of this efficiency.

Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains.,Bingham RJ, Rudino-Pinera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Hook M, Garman EF, Potts JR Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12254-8. Epub 2008 Aug 19. PMID:18713862[18]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Castelletti F, Donadelli R, Banterla F, Hildebrandt F, Zipfel PF, Bresin E, Otto E, Skerka C, Renieri A, Todeschini M, Caprioli J, Caruso RM, Artuso R, Remuzzi G, Noris M. Mutations in FN1 cause glomerulopathy with fibronectin deposits. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2538-43. Epub 2008 Feb 11. PMID:18268355 doi:0707730105
  2. Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
  3. Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
  4. Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
  5. You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003
  6. Morla A, Zhang Z, Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193-6. PMID:8114919 doi:http://dx.doi.org/10.1038/367193a0
  7. Yi M, Ruoslahti E. A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):620-4. PMID:11209058 doi:10.1073/pnas.98.2.620
  8. Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res. 2005 Jan 1;65(1):148-56. PMID:15665290
  9. You R, Klein RM, Zheng M, McKeown-Longo PJ. Regulation of p38 MAP kinase by anastellin is independent of anastellin's effect on matrix fibronectin. Matrix Biol. 2009 Mar;28(2):101-9. doi: 10.1016/j.matbio.2009.01.003. Epub 2009, Feb 4. PMID:19379667 doi:10.1016/j.matbio.2009.01.003
  10. Signas C, Raucci G, Jonsson K, Lindgren PE, Anantharamaiah GM, Hook M, Lindberg M. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci U S A. 1989 Jan;86(2):699-703. PMID:2521391
  11. Wann ER, Gurusiddappa S, Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem. 2000 May 5;275(18):13863-71. PMID:10788510
  12. Massey RC, Kantzanou MN, Fowler T, Day NP, Schofield K, Wann ER, Berendt AR, Hook M, Peacock SJ. Fibronectin-binding protein A of Staphylococcus aureus has multiple, substituting, binding regions that mediate adherence to fibronectin and invasion of endothelial cells. Cell Microbiol. 2001 Dec;3(12):839-51. PMID:11736995
  13. Que YA, Francois P, Haefliger JA, Entenza JM, Vaudaux P, Moreillon P. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect Immun. 2001 Oct;69(10):6296-302. PMID:11553573 doi:10.1128/IAI.69.10.6296-6302.2001
  14. Roche FM, Downer R, Keane F, Speziale P, Park PW, Foster TJ. The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem. 2004 Sep 10;279(37):38433-40. Epub 2004 Jul 2. PMID:15234962 doi:10.1074/jbc.M402122200
  15. Heilmann C, Niemann S, Sinha B, Herrmann M, Kehrel BE, Peters G. Staphylococcus aureus fibronectin-binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J Infect Dis. 2004 Jul 15;190(2):321-9. Epub 2004 Jun 21. PMID:15216468 doi:10.1086/421914
  16. Que YA, Haefliger JA, Piroth L, Francois P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med. 2005 May 16;201(10):1627-35. PMID:15897276 doi:jem.20050125
  17. Keane FM, Clarke AW, Foster TJ, Weiss AS. The N-terminal A domain of Staphylococcus aureus fibronectin-binding protein A binds to tropoelastin. Biochemistry. 2007 Jun 19;46(24):7226-32. Epub 2007 May 22. PMID:17516661 doi:10.1021/bi700454x
  18. Bingham RJ, Rudino-Pinera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Hook M, Garman EF, Potts JR. Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12254-8. Epub 2008 Aug 19. PMID:18713862

2rl0, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA