2w03

From Proteopedia
Revision as of 13:08, 7 February 2016 by OCA (talk | contribs)
Jump to navigation Jump to search

CO-COMPLEX STRUCTURE OF ACHROMOBACTIN SYNTHETASE PROTEIN D (ACSD) WITH ADENOSINE, SULFATE AND CITRATE FROM PECTOBACTERIUM CHRYSANTHEMICO-COMPLEX STRUCTURE OF ACHROMOBACTIN SYNTHETASE PROTEIN D (ACSD) WITH ADENOSINE, SULFATE AND CITRATE FROM PECTOBACTERIUM CHRYSANTHEMI

Structural highlights

2w03 is a 2 chain structure with sequence from "erwinia_carotovora_var._chrysanthemi"_(burkholder_et_al._1953)_dye_1969 "erwinia carotovora var. chrysanthemi" (burkholder et al. 1953) dye 1969. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Bacterial pathogens need to scavenge iron from their host for growth and proliferation during infection. They have evolved several strategies to do this, one being the biosynthesis and excretion of small, high-affinity iron chelators known as siderophores. The biosynthesis of siderophores is an important area of study, not only for potential therapeutic intervention but also to illuminate new enzyme chemistries. Two general pathways for siderophore biosynthesis exist: the well-characterized nonribosomal peptide synthetase (NRPS)-dependent pathway and the NRPS-independent siderophore (NIS) pathway, which relies on a different family of sparsely investigated synthetases. Here we report structural and biochemical studies of AcsD from Pectobacterium (formerly Erwinia) chrysanthemi, an NIS synthetase involved in achromobactin biosynthesis. The structures of ATP and citrate complexes provide a mechanistic rationale for stereospecific formation of an enzyme-bound (3R)-citryladenylate, which reacts with L-serine to form a likely achromobactin precursor. AcsD is a unique acyladenylate-forming enzyme with a new fold and chemical catalysis strategy.

AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis.,Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH, White MF, Challis GL, Naismith JH Nat Chem Biol. 2009 Feb 1. PMID:19182782[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Schmelz S, Kadi N, McMahon SA, Song L, Oves-Costales D, Oke M, Liu H, Johnson KA, Carter LG, Botting CH, White MF, Challis GL, Naismith JH. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nat Chem Biol. 2009 Feb 1. PMID:19182782 doi:nchembio.145

2w03, resolution 2.95Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA