DNA Polymerase in Thermococcus gorgonarius
This Sandbox is Reserved from September 14, 2021, through May 31, 2022, for use in the class Introduction to Biochemistry taught by User:John Means at the University of Rio Grande, Rio Grande, OH, USA. This reservation includes 5 reserved sandboxes (Sandbox Reserved 1590 through Sandbox Reserved 1594). |
To get started:
More help: Help:Editing. For an example of a student Proteopedia page, please see Photosystem II, Tetanospasmin, or Guanine riboswitch. |
DNA PolymeraseDNA Polymerase
This is a default text for your page '. Click above on edit this page' to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.[2] FunctionDNA polymerase has an important role in the development of life. DNA polymerase is an enzyme, which synthesizes new stands of DNA from preexisting DNA. It does this by adding one nucleotide at a time to the 3’ end of a growing strand. The new DNA strands are always synthesized from 5’ to the 3’ direction. (GENETICS BOOK) The original DNA stands are used as templates for the synthesis of new strands of DNA. DNA polymerases are the enzymes that catalyze the attachment of nucleotides to synthesize a new DNA strand. DNA polymerase I is composed of a single polypeptide that removes the RNA primers and replaces them with DNA. DNA polymerase III is responsible for the majority of the DNA replication and the proofreading from 3’ to 5’. DNA follows Chargaff’s rule, which states that cytosine binds to guanine and adenine binds to thymine. [3] Each time a cell divides, DNA polymerase duplicates all of the cell’s DNA, and the cell passes one copy of DNA to each daughter cell. DNA polymerase roughly makes only one mistake every billion bases. Although Chargaff’s rule help makes the replication on DNA polymerase easier, an extra step of proofreading and cutting out the mismatched bases after replication is the reason why DNA polymerase is the most accurate enzyme. [4] Diseasehttp://tools.niehs.nih.gov/polg/ RelevanceStructural highlightsDNA polymerase from Thermococcus gorgonarius (Tgo) is composed of 2,319 nucleotides. Tgo a single polypeptide chain made up of 773 amino acids which are folded into five domains. The five domains in Tgo are the N-terminal, 3’ to 5’ exonuclease, palm, fingers, and the thumb. These five domain are arranged to form a ring shaped molecule. The structure of DNA polymerase can be described by using the “right hand model” which has a . The palm region (blue) catalyzes the phosphoric transfer. The finger region (green) interacts with the newly incoming nucleotides and the template bases that are paired together with the nucleotides. The thumb (red) helps position the DNA and with translocation. [5]
|
|
ReferencesReferences
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ 2.0 2.1 Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Bell SJ, Forsdyke DR. Accounting units in DNA. J Theor Biol. 1999 Mar 7;197(1):51-61. PMID:10036207 doi:http://dx.doi.org/10.1006/jtbi.1998.0857
- ↑ DOI:10.2210/rcsb_pdb/mom_2000_3
- ↑ PMCID:PMC22340