THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE DOUBLE MUTANT 1THERMUS THERMOPHILUS ASPARTATE AMINOTRANSFERASE DOUBLE MUTANT 1

Structural highlights

1b5p is a 2 chain structure with sequence from Thet8. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:Aspartate transaminase, with EC number 2.6.1.1
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Aspartate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus HB8 (ttAspAT), has been believed to be specific for an acidic substrate. However, stepwise introduction of mutations in the active-site residues finally changed its substrate specificity to that of a dual-substrate enzyme. The final mutant, [S15D, T17V, K109S, S292R] ttAspAT, is active toward both acidic and hydrophobic substrates. During the course of stepwise mutation, the activities toward acidic and hydrophobic substrates changed independently. The introduction of a mobile Arg292* residue into ttAspAT was the key step in the change to a "dual-substrate" enzyme. The substrate recognition mechanism of this thermostable "dual-substrate" enzyme was confirmed by X-ray crystallography. This work together with previous studies on various enzymes suggest that this unique "dual-substrate recognition" mechanism is a feature of not only aminotransferases but also other enzymes.

Substrate recognition mechanism of thermophilic dual-substrate enzyme.,Ura H, Nakai T, Kawaguchi SI, Miyahara I, Hirotsu K, Kuramitsu S J Biochem. 2001 Jul;130(1):89-98. PMID:11432784[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ura H, Nakai T, Kawaguchi SI, Miyahara I, Hirotsu K, Kuramitsu S. Substrate recognition mechanism of thermophilic dual-substrate enzyme. J Biochem. 2001 Jul;130(1):89-98. PMID:11432784

1b5p, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA