1hw2

From Proteopedia
Revision as of 17:26, 11 September 2015 by OCA (talk | contribs)
Jump to navigation Jump to search

FADR-DNA COMPLEX: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM IN ECHERICHIA COLIFADR-DNA COMPLEX: TRANSCRIPTIONAL CONTROL OF FATTY ACID METABOLISM IN ECHERICHIA COLI

Structural highlights

1hw2 is a 4 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:FADR ("Bacillus coli" Migula 1895)
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[FADR_ECOLI] Multifunctional regulator of fatty acid metabolism. Represses transcription of at least eight genes required for fatty acid transport and beta-oxidation including fadA, fadB, fadD, fadL and fadE. Activates transcription of at least three genes required for unsaturated fatty acid biosynthesis: fabA, fabB and iclR, the gene encoding the transcriptional regulator of the aceBAK operon encoding the glyoxylate shunt enzymes. Binding of FadR is specifically inhibited by long chain fatty acyl-CoA compounds.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In Escherichia coli, the expression of fatty acid metabolic genes is controlled by the transcription factor, FadR. The affinity of FadR for DNA is controlled by long chain acyl-CoA molecules, which bind to the protein and modulate gene expression. The crystal structure of FadR reveals a two domain dimeric molecule where the N-terminal domains bind DNA, and the C-terminal domains bind acyl-CoA. The DNA binding domain has a winged-helix motif, and the C-terminal domain resembles the sensor domain of the Tet repressor. The FadR.DNA complex reveals how the protein interacts with DNA and specifically recognizes a palindromic sequence. Structural and functional similarities to the Tet repressor and the BmrR transcription factors suggest how the binding of the acyl-CoA effector molecule to the C-terminal domain may affect the DNA binding affinity of the N-terminal domain. We suggest that the binding of acyl-CoA disrupts a buried network of charged and polar residues in the C-terminal domain, and the resulting conformational change is transmitted to the N-terminal domain via a domain-spanning alpha-helix.

The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli.,Xu Y, Heath RJ, Li Z, Rock CO, White SW J Biol Chem. 2001 May 18;276(20):17373-9. Epub 2001 Feb 13. PMID:11279025[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Xu Y, Heath RJ, Li Z, Rock CO, White SW. The FadR.DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. J Biol Chem. 2001 May 18;276(20):17373-9. Epub 2001 Feb 13. PMID:11279025 doi:10.1074/jbc.M100195200

1hw2, resolution 3.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA