1ii6
Crystal Structure of the Mitotic Kinesin Eg5 in Complex with Mg-ADP.Crystal Structure of the Mitotic Kinesin Eg5 in Complex with Mg-ADP.
Structural highlights
Disease[KIF11_HUMAN] Defects in KIF11 are the cause of microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) [MIM:152950]. An autosomal dominant disorder that involves an overlapping but variable spectrum of central nervous system and ocular developmental anomalies. Microcephaly ranges from mild to severe and is often associated with mild to moderate developmental delay and a characteristic facial phenotype with upslanting palpebral fissures, broad nose with rounded tip, long philtrum with thin upper lip, prominent chin, and prominent ears. Chorioretinopathy is the most common eye abnormality, but retinal folds, microphthalmia, and myopic and hypermetropic astigmatism have also been reported, and some individuals have no overt ocular phenotype. Congenital lymphedema, when present, is typically confined to the dorsa of the feet, and lymphoscintigraphy reveals the absence of radioactive isotope uptake from the webspaces between the toes.[1] Function[KIF11_HUMAN] Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.[2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedSuccess of mitosis depends upon the coordinated and regulated activity of many cellular factors, including kinesin motor proteins, which are required for the assembly and function of the mitotic spindle. Eg5 is a kinesin implicated in the formation of the bipolar spindle and its movement prior to and during anaphase. We have determined the crystal structure of the Eg5 motor domain with ADP-Mg bound. This structure revealed a new intramolecular binding site of the neck-linker. In other kinesins, the neck-linker has been shown to be a critical mechanical element for force generation. The neck-linker of conventional kinesin is believed to undergo an ordered-to-disordered transition as it translocates along a microtubule. The structure of Eg5 showed an ordered neck-linker conformation in a position never observed previously. The docking of the neck-linker relies upon residues conserved only in the Eg5 subfamily of kinesin motors. Based on this new information, we suggest that the neck-linker of Eg5 may undergo an ordered-to-ordered transition during force production. This ratchet-like mechanism is consistent with the biological activity of Eg5. Crystal structure of the mitotic spindle kinesin Eg5 reveals a novel conformation of the neck-linker.,Turner J, Anderson R, Guo J, Beraud C, Fletterick R, Sakowicz R J Biol Chem. 2001 Jul 6;276(27):25496-502. Epub 2001 Apr 27. PMID:11328809[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|