2glx

From Proteopedia
Revision as of 09:19, 10 September 2015 by OCA (talk | contribs)
Jump to navigation Jump to search

Crystal Structure Analysis of bacterial 1,5-AF ReductaseCrystal Structure Analysis of bacterial 1,5-AF Reductase

Structural highlights

2glx is a 6 chain structure with sequence from Atcc 33212. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Gene:afr (ATCC 33212)
Activity:1,5-anhydro-D-fructose reductase, with EC number 1.1.1.263
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum

Function

[AFR_ENSAD] Catalyzes the NADPH-specific reduction of 1,5-anhydro-D-fructose to 1,5-anhydro-D-mannitol. Also shows some activity against structurally related compounds such as 3-keto-1,5-anhydro-D-fructose, D-glucosone and D-xylosone. The enzyme cannot use NADH as cosubstrate.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Recombinant 1,5-anhydro-d-fructose reductase (AFR) from Sinorhizobium morelense S-30.7.5 was crystallized in complex with the cofactor NADP(H) and its structure determined to 2.2 A resolution using selenomethionine SAD (refined R(work) and R(free) factors of 18.9 and 25.0%, respectively). As predicted from the sequence and shown by the structure, AFR can be assigned to the GFO/IDH/MocA protein family. AFR consists of two domains. The N-terminal domain displays a Rossmann fold and contains the cofactor binding site. The intact crystals contain the oxidized cofactor NADP(+), whose attachment to the cofactor binding site is similar to that of NADP(+) in glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis. Due to variations in length and sequence within loop regions L3 and L5, respectively, the adenine moiety of NADP(+) adopts a different orientation in AFR caused by residue Arg38 forming hydrogen bonds with the 2'-phosphate moiety of NADP(+) and cation-pi stacking interactions with the adenine ring. Amino acid replacements in AFR (S10G, A13G, and S33D) showed that Ala13 is crucial for the discrimination between NADPH and NADH and yielded the A13G variant with dual cosubstrate specificity. The C-terminal domain contains the putative substrate binding site that was occupied by an acetate ion. As determined by analogy to GFOR and by site-directed mutagenesis of K94G, D176A, and H180A, residues Lys94, Asp176, and His180 are most likely involved in substrate binding and catalysis, as substitution of any of these residues resulted in a significant decrease in k(cat) for 1,5-AF. In this context, His180 might serve as a general acid-base catalyst by polarizing the carbonyl function of 1,5-AF to enable the transfer of the hydride from NADPH to the substrate. Here we present the first structure of an AFR enzyme catalyzing the stereoselective reduction of 1,5-AF to 1,5-anhydro-d-mannitol, the final step of a modified anhydrofructose pathway in S. morelense S-30.7.5. We also emphasize the importance of the A13G variant in biocatalysis for the synthesis of 1,5-AM and related derivatives.

Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis.,Dambe TR, Kuhn AM, Brossette T, Giffhorn F, Scheidig AJ Biochemistry. 2006 Aug 22;45(33):10030-42. PMID:16906761[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Dambe TR, Kuhn AM, Brossette T, Giffhorn F, Scheidig AJ. Crystal structure of NADP(H)-dependent 1,5-anhydro-D-fructose reductase from Sinorhizobium morelense at 2.2 A resolution: construction of a NADH-accepting mutant and its application in rare sugar synthesis. Biochemistry. 2006 Aug 22;45(33):10030-42. PMID:16906761 doi:10.1021/bi052589q

2glx, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA