Structure of Ebola virus nucleoprotein N-terminal fragment bound to a peptide derived from Ebola VP35Structure of Ebola virus nucleoprotein N-terminal fragment bound to a peptide derived from Ebola VP35

Structural highlights

4ypi is a 8 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[NCAP_EBOZM] Encapsidates the genome, protecting it from nucleases. The encapsidated genomic RNA is termed the nucleocapsid and serves as template for transcription and replication. During replication, encapsidation by NP is coupled to RNA synthesis and all replicative products are resistant to nucleases. [VP35_EBOZM] Acsts as a polymerase cofactor in the RNA polymerase transcription and replication complex. Prevents establishment of cellular antiviral state by blocking virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF3), a transcription factor critical for the induction of interferons alpha and beta. The mechanism by which this blockage occurs remains incompletely defined, a hypothesis suggests that VP35 dsRNA-binding activity prevents activation of IRF3 by sequestering dsRNA. Also inhibits the antiviral effect mediated by the interferon-induced, double-stranded RNA-activated protein kinase EIF2AK2/PKR.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20-48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/DeltaNPNTD complex, solved to 3.7 A resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions.,Leung DW, Borek D, Luthra P, Binning JM, Anantpadma M, Liu G, Harvey IB, Su Z, Endlich-Frazier A, Pan J, Shabman RS, Chiu W, Davey RA, Otwinowski Z, Basler CF, Amarasinghe GK Cell Rep. 2015 Apr 21;11(3):376-89. doi: 10.1016/j.celrep.2015.03.034. Epub 2015 , Apr 9. PMID:25865894[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S. Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol. 1999 Mar;73(3):2333-42. PMID:9971816
  2. Basler CF, Wang X, Muhlberger E, Volchkov V, Paragas J, Klenk HD, Garcia-Sastre A, Palese P. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94. PMID:11027311 doi:10.1073/pnas.220398297
  3. Basler CF, Mikulasova A, Martinez-Sobrido L, Paragas J, Muhlberger E, Bray M, Klenk HD, Palese P, Garcia-Sastre A. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol. 2003 Jul;77(14):7945-56. PMID:12829834
  4. Enterlein S, Warfield KL, Swenson DL, Stein DA, Smith JL, Gamble CS, Kroeker AD, Iversen PL, Bavari S, Muhlberger E. VP35 knockdown inhibits Ebola virus amplification and protects against lethal infection in mice. Antimicrob Agents Chemother. 2006 Mar;50(3):984-93. PMID:16495261 doi:10.1128/AAC.50.3.984-993.2006
  5. Feng Z, Cerveny M, Yan Z, He B. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J Virol. 2007 Jan;81(1):182-92. Epub 2006 Oct 25. PMID:17065211 doi:JVI.01006-06
  6. Leung DW, Borek D, Luthra P, Binning JM, Anantpadma M, Liu G, Harvey IB, Su Z, Endlich-Frazier A, Pan J, Shabman RS, Chiu W, Davey RA, Otwinowski Z, Basler CF, Amarasinghe GK. An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. Cell Rep. 2015 Apr 21;11(3):376-89. doi: 10.1016/j.celrep.2015.03.034. Epub 2015 , Apr 9. PMID:25865894 doi:http://dx.doi.org/10.1016/j.celrep.2015.03.034

4ypi, resolution 3.71Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA