2xwh

From Proteopedia
Revision as of 11:09, 25 January 2015 by OCA (talk | contribs)
Jump to navigation Jump to search

HCV-J6 NS5B POLYMERASE STRUCTURE AT 1.8 ANGSTROMHCV-J6 NS5B POLYMERASE STRUCTURE AT 1.8 ANGSTROM

Structural highlights

2xwh is a 1 chain structure with sequence from Viruses. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
Activity:RNA-directed RNA polymerase, with EC number 2.7.7.48
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

The HCV genotype 2a isolate JFH1 represents the only cloned HCV wild-type sequence capable of efficient replication in cell culture as well as in vivo. Previous reports have pointed to NS5B, the viral RNA dependent RNA polymerase (RdRp), as a major determinant for efficient replication of this isolate. To understand the contribution of the JFH1 NS5B gene at the molecular level, we aimed at conferring JFH1 properties to NS5B from the closely related J6 isolate. We created intragenotypic chimeras in the NS5B region of JFH1 and J6 and compared replication efficiency in cell culture and RdRp activity of the purified proteins in vitro, revealing more than three independent mechanisms conferring the role of JFH1 NS5B in efficient RNA replication. Most critical was residue I405 in the thumb domain of the polymerase, strongly stimulating replication in cell culture by enhancing overall de novo RNA synthesis. A structural comparison of JFH1 and J6 at high resolution indicated a clear correlation of a closed thumb conformation of the RdRp and the efficiency of the enzyme at de novo RNA synthesis, in accordance with the proposal that I405 enhances de novo initiation. In addition, we identified several residues enhancing replication independent of RdRp activity in vitro. The functional properties of JFH1 NS5B could be restored by a few single nucleotide substitutions to the J6 isolate. Finally, we were able to enhance replication efficiency of a genotype 1b isolate with the I405 mutation, indicating that this mechanism of action is conserved across genotypes.

A comprehensive structure-function comparison of hepatitis C virus strains JFH1 and J6 polymerases reveals a key residue stimulating replication in cell culture across genotypes.,Schmitt M, Scrima N, Radujkovic D, Caillet-Saguy C, Simister PC, Friebe P, Wicht O, Klein R, Bartenschlager R, Lohmann V, Bressanelli S J Virol. 2011 Jan 5. PMID:21209117[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schmitt M, Scrima N, Radujkovic D, Caillet-Saguy C, Simister PC, Friebe P, Wicht O, Klein R, Bartenschlager R, Lohmann V, Bressanelli S. A comprehensive structure-function comparison of hepatitis C virus strains JFH1 and J6 polymerases reveals a key residue stimulating replication in cell culture across genotypes. J Virol. 2011 Jan 5. PMID:21209117 doi:10.1128/JVI.02177-10

2xwh, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA