3zek

From Proteopedia
Revision as of 10:47, 25 December 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

Hen egg-white lysozyme structure determined at room temperature by in- situ diffraction in ChipXHen egg-white lysozyme structure determined at room temperature by in- situ diffraction in ChipX

Structural highlights

3zek is a 1 chain structure with sequence from Chick. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:Lysozyme, with EC number 3.2.1.17
Resources:FirstGlance, OCA, RCSB, PDBsum

Function

[LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Publication Abstract from PubMed

Microfluidic devices were designed to perform on micromoles of biological macromolecules and viruses the search and the optimization of crystallization conditions by counter-diffusion, as well as the on-chip analysis of crystals by X-ray diffraction. Chips composed of microchannels were fabricated in poly-dimethylsiloxane (PDMS), poly-methyl-methacrylate (PMMA) and cyclo-olefin-copolymer (COC) by three distinct methods, namely replica casting, laser ablation and hot embossing. The geometry of the channels was chosen to ensure that crystallization occurs in a convection-free environment. The transparency of the materials is compatible with crystal growth monitoring by optical microscopy. The quality of the protein 3D structures derived from on-chip crystal analysis by X-ray diffraction using a synchrotron radiation was used to identify the most appropriate polymers. Altogether the results demonstrate that for a novel biomolecule, all steps from the initial search of crystallization conditions to X-ray diffraction data collection for 3D structure determination can be performed in a single chip.

Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.,Dhouib K, Khan Malek C, Pfleging W, Gauthier-Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer JL, Theobald-Dietrich A, Giege R, Lorber B, Sauter C Lab Chip. 2009 May 21;9(10):1412-21. doi: 10.1039/b819362b. Epub 2009 Mar 2. PMID:19417908[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Dhouib K, Khan Malek C, Pfleging W, Gauthier-Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer JL, Theobald-Dietrich A, Giege R, Lorber B, Sauter C. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip. 2009 May 21;9(10):1412-21. doi: 10.1039/b819362b. Epub 2009 Mar 2. PMID:19417908 doi:http://dx.doi.org/10.1039/b819362b

3zek, resolution 1.43Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA