2gpl
TMC-95 based biphenyl-ether macrocycles: specific proteasome inhibitorsTMC-95 based biphenyl-ether macrocycles: specific proteasome inhibitors
Structural highlights
Function[PSA3_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB5_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This unit is responsible of the chymotrypsin-like activity of the proteasome and is one of the principal target of the proteasome inhibitor bortezomib. This subunit is necessary for chymotryptic activity and degradation of ubiquitinated proteins. [PSA7_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSA6_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB3_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit may participate in the trypsin-like activity of the enzyme complex. [PSA4_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB1_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity. This subunit is necessary for the peptidylglutamyl-peptide hydrolyzing activity. [PSB6_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB7_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. PRE3 and PRE4 are necessary for the peptidyl-glutamyl-peptide-hydrolyzing activity.[1] [PSA2_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSA5_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB2_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. [PSB4_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. This subunit has a chymotrypsin-like activity. [PSA1_YEAST] The proteasome degrades poly-ubiquitinated proteins in the cytoplasm and in the nucleus. It is essential for the regulated turnover of proteins and for the removal of misfolded proteins. The proteasome is a multicatalytic proteinase complex that is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. It has an ATP-dependent proteolytic activity. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTMC-95's natural cyclic tripeptide metabolites represent potent competitive proteasome inhibitors. The constrained conformation of TMC-95 proteasomal inhibitors provides the driving force for entropically high-affinity binding. Based on the crystal structure of the proteasome:TMC-95A complex, the synthetically challenging TMC-95 core structure was used for the design and synthesis of less demanding biphenyl-ether macrocycles, in which the biphenyl-ether moiety functions as an endocyclic clamp restricting its tripeptide backbone. These simplified analogs allowed us to identify high plasticity of the proteasomal tryptic-like specificity pocket. Biphenyl-ether compounds extended with an amide group were hydrolyzed by the proteasome, although the crystal structure of such proteasome:biphenyl-ether complexes revealed quenching of proteolysis at the acyl-enzyme intermediate. Our data reveal that biphenyl-ether derivatives bind noncovalently to the proteasomal tryptic-like active site in a reversible substrate-like manner without allosteric changes of active site residues. TMC-95-based inhibitor design provides evidence for the catalytic versatility of the proteasome.,Groll M, Gotz M, Kaiser M, Weyher E, Moroder L Chem Biol. 2006 Jun;13(6):607-14. PMID:16793518[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|