3sb5

From Proteopedia
Revision as of 15:58, 9 December 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

Zn-mediated Trimer of T4 Lysozyme R125C/E128C by Synthetic SymmetrizationZn-mediated Trimer of T4 Lysozyme R125C/E128C by Synthetic Symmetrization

Structural highlights

3sb5 is a 4 chain structure with sequence from Enterobacteria phage t4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:, , ,
Gene:E (Enterobacteria phage T4)
Activity:Lysozyme, with EC number 3.2.1.17
Resources:FirstGlance, OCA, RCSB, PDBsum

Publication Abstract from PubMed

Combining the concepts of synthetic symmetrization with the approach of engineering metal binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and co-crystallized them with one of three metal ions: copper (Cu(2+) ), nickel (Ni(2+) ) or zinc (Zn(2+) ). The approach resulted in 16 new crystal structures - 8 for T4L and 8 for MBP - displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.

An approach to crystallizing proteins by metal-mediated synthetic symmetrization.,Laganowsky A, Zhao M, Soriaga AB, Sawaya MR, Cascio D, Yeates TO Protein Sci. 2011 Sep 6. doi: 10.1002/pro.727. PMID:21898649[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Laganowsky A, Zhao M, Soriaga AB, Sawaya MR, Cascio D, Yeates TO. An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Protein Sci. 2011 Sep 6. doi: 10.1002/pro.727. PMID:21898649 doi:10.1002/pro.727

3sb5, resolution 2.46Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA