CRYSTAL STRUCTURE OF L1 RIBOSOMAL PROTEIN FROM METHANOCOCCUS JANNASCHII WITH 1.85A RESOLUTION.CRYSTAL STRUCTURE OF L1 RIBOSOMAL PROTEIN FROM METHANOCOCCUS JANNASCHII WITH 1.85A RESOLUTION.

Structural highlights

1i2a is a 1 chain structure with sequence from Atcc 43067. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Related:1cjs
Gene:RPLA (ATCC 43067)
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase], a template-independent RNA polymerase, adds the defined 'cytidine-cytidine-adenosine' sequence onto the 3' end of tRNA. The archaeal CCA-adding enzyme (class I) and eubacterial/eukaryotic CCA-adding enzyme (class II) show little amino acid sequence homology, but catalyze the same reaction in a defined fashion. Here, we present the crystal structures of the class I archaeal CCA-adding enzyme from Archaeoglobus fulgidus, and its complexes with CTP and ATP at 2.0, 2.0 and 2.7 A resolutions, respectively. The geometry of the catalytic carboxylates and the relative positions of CTP and ATP to a single catalytic site are well conserved in both classes of CCA-adding enzymes, whereas the overall architectures, except for the catalytic core, of the class I and class II CCA-adding enzymes are fundamentally different. Furthermore, the recognition mechanisms of substrate nucleotides and tRNA molecules are distinct between these two classes, suggesting that the catalytic domains of class I and class II enzymes share a common origin, and distinct substrate recognition domains have been appended to form the two presently divergent classes.

Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure.,Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S EMBO J. 2003 Nov 3;22(21):5918-27. PMID:14592988[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. EMBO J. 2003 Nov 3;22(21):5918-27. PMID:14592988 doi:http://dx.doi.org/10.1093/emboj/cdg563

1i2a, resolution 1.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA