a crystal structure of PPAR alpha bound with SRC1 peptide and GW735a crystal structure of PPAR alpha bound with SRC1 peptide and GW735

Structural highlights

2p54 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:PPARA, NR1C1, PPAR (Homo sapiens)
Activity:Histone acetyltransferase, with EC number 2.3.1.48
Resources:FirstGlance, OCA, RCSB, PDBsum

Disease

[NCOA1_HUMAN] Note=A chromosomal aberration involving NCOA1 is a cause of rhabdomyosarcoma. Translocation t(2;2)(q35;p23) with PAX3 generates the NCOA1-PAX3 oncogene consisting of the N-terminus part of PAX3 and the C-terminus part of NCOA1. The fusion protein acts as a transcriptional activator. Rhabdomyosarcoma is the most common soft tissue carcinoma in childhood, representing 5-8% of all malignancies in children.

Function

[PPARA_HUMAN] Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety (By similarity). Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2.[1] [2] [3] [4] [NCOA1_HUMAN] Nuclear receptor coactivator that directly binds nuclear receptors and stimulates the transcriptional activities in a hormone-dependent fashion. Involved in the coactivation of different nuclear receptors, such as for steroids (PGR, GR and ER), retinoids (RXRs), thyroid hormone (TRs) and prostanoids (PPARs). Also involved in coactivation mediated by STAT3, STAT5A, STAT5B and STAT6 transcription factors. Displays histone acetyltransferase activity toward H3 and H4; the relevance of such activity remains however unclear. Plays a central role in creating multisubunit coactivator complexes that act via remodeling of chromatin, and possibly acts by participating in both chromatin remodeling and recruitment of general transcription factors. Required with NCOA2 to control energy balance between white and brown adipose tissues. Required for mediating steroid hormone response. Isoform 2 has a higher thyroid hormone-dependent transactivation activity than isoform 1 and isoform 3.[5] [6] [7] [8] [9] [10] [11]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The peroxisome proliferator activated receptors PPARalpha, PPARgamma, and PPARdelta are ligand-activated transcription factors that play a key role in lipid homeostasis. The fibrates raise circulating levels of high-density lipoprotein cholesterol and lower levels of triglycerides in part through their activity as PPARalpha agonists; however, the low potency and restricted selectivity of the fibrates may limit their efficacy, and it would be desirable to develop more potent and selective PPARalpha agonists. Modification of the selective PPARdelta agonist 1 (GW501516) so as to incorporate the 2-aryl-2-methylpropionic acid group of the fibrates led to a marked shift in potency and selectivity toward PPARalpha agonism. Optimization of the series gave 25a, which shows EC50 = 4 nM on PPARalpha and at least 500-fold selectivity versus PPARdelta and PPARgamma. Compound 25a (GW590735) has been progressed to clinical trials for the treatment of diseases of lipid imbalance.

Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARalpha agonists. 1. Discovery of a novel series of potent HDLc raising agents.,Sierra ML, Beneton V, Boullay AB, Boyer T, Brewster AG, Donche F, Forest MC, Fouchet MH, Gellibert FJ, Grillot DA, Lambert MH, Laroze A, Le Grumelec C, Linget JM, Montana VG, Nguyen VL, Nicodeme E, Patel V, Penfornis A, Pineau O, Pohin D, Potvain F, Poulain G, Ruault CB, Saunders M, Toum J, Xu HE, Xu RX, Pianetti PM J Med Chem. 2007 Feb 22;50(4):685-95. Epub 2007 Jan 23. PMID:17243659[12]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry. 1993 Jun 1;32(21):5598-604. PMID:7684926
  2. Juge-Aubry CE, Gorla-Bajszczak A, Pernin A, Lemberger T, Wahli W, Burger AG, Meier CA. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J Biol Chem. 1995 Jul 28;270(30):18117-22. PMID:7629123
  3. Yan ZH, Karam WG, Staudinger JL, Medvedev A, Ghanayem BI, Jetten AM. Regulation of peroxisome proliferator-activated receptor alpha-induced transactivation by the nuclear orphan receptor TAK1/TR4. J Biol Chem. 1998 May 1;273(18):10948-57. PMID:9556573
  4. Gorla-Bajszczak A, Juge-Aubry C, Pernin A, Burger AG, Meier CA. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol. 1999 Jan 25;147(1-2):37-47. PMID:10195690
  5. Kalkhoven E, Valentine JE, Heery DM, Parker MG. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 1998 Jan 2;17(1):232-43. PMID:9427757 doi:10.1093/emboj/17.1.232
  6. Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science. 1995 Nov 24;270(5240):1354-7. PMID:7481822
  7. Hayashi Y, Ohmori S, Ito T, Seo H. A splicing variant of Steroid Receptor Coactivator-1 (SRC-1E): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem Biophys Res Commun. 1997 Jul 9;236(1):83-7. PMID:9223431 doi:10.1006/bbrc.1997.6911
  8. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 1997 Sep 11;389(6647):194-8. PMID:9296499 doi:10.1038/38304
  9. Jenster G, Spencer TE, Burcin MM, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor induction of gene transcription: a two-step model. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7879-84. PMID:9223281
  10. Liu Z, Wong J, Tsai SY, Tsai MJ, O'Malley BW. Steroid receptor coactivator-1 (SRC-1) enhances ligand-dependent and receptor-dependent cell-free transcription of chromatin. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9485-90. PMID:10449719
  11. Litterst CM, Kliem S, Marilley D, Pfitzner E. NCoA-1/SRC-1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical region of the STAT5 transactivation domain. J Biol Chem. 2003 Nov 14;278(46):45340-51. Epub 2003 Sep 3. PMID:12954634 doi:http://dx.doi.org/10.1074/jbc.M303644200
  12. Sierra ML, Beneton V, Boullay AB, Boyer T, Brewster AG, Donche F, Forest MC, Fouchet MH, Gellibert FJ, Grillot DA, Lambert MH, Laroze A, Le Grumelec C, Linget JM, Montana VG, Nguyen VL, Nicodeme E, Patel V, Penfornis A, Pineau O, Pohin D, Potvain F, Poulain G, Ruault CB, Saunders M, Toum J, Xu HE, Xu RX, Pianetti PM. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARalpha agonists. 1. Discovery of a novel series of potent HDLc raising agents. J Med Chem. 2007 Feb 22;50(4):685-95. Epub 2007 Jan 23. PMID:17243659 doi:10.1021/jm058056x

2p54, resolution 1.79Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA