1k0y
X-ray Crystallographic Analyses of Symmetrical Allosteric Effectors of Hemoglobin. Compounds Designed to Link Primary and Secondary Binding SitesX-ray Crystallographic Analyses of Symmetrical Allosteric Effectors of Hemoglobin. Compounds Designed to Link Primary and Secondary Binding Sites
Structural highlights
Disease[HBB_HUMAN] Defects in HBB may be a cause of Heinz body anemias (HEIBAN) [MIM:140700]. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] [2] [3] [4] Defects in HBB are the cause of beta-thalassemia (B-THAL) [MIM:613985]. A form of thalassemia. Thalassemias are common monogenic diseases occurring mostly in Mediterranean and Southeast Asian populations. The hallmark of beta-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. Absence of beta chain causes beta(0)-thalassemia, while reduced amounts of detectable beta globin causes beta(+)-thalassemia. In the severe forms of beta-thalassemia, the excess alpha globin chains accumulate in the developing erythroid precursors in the marrow. Their deposition leads to a vast increase in erythroid apoptosis that in turn causes ineffective erythropoiesis and severe microcytic hypochromic anemia. Clinically, beta-thalassemia is divided into thalassemia major which is transfusion dependent, thalassemia intermedia (of intermediate severity), and thalassemia minor that is asymptomatic.[5] Defects in HBB are the cause of sickle cell anemia (SKCA) [MIM:603903]; also known as sickle cell disease. Sickle cell anemia is characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood supply to nearby tissues. Defects in HBB are the cause of beta-thalassemia dominant inclusion body type (B-THALIB) [MIM:603902]. An autosomal dominant form of beta thalassemia characterized by moderate anemia, lifelong jaundice, cholelithiasis and splenomegaly, marked morphologic changes in the red cells, erythroid hyperplasia of the bone marrow with increased numbers of multinucleate red cell precursors, and the presence of large inclusion bodies in the normoblasts, both in the marrow and in the peripheral blood after splenectomy.[6] Function[HBB_HUMAN] Involved in oxygen transport from the lung to the various peripheral tissues.[7] LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.[8] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe rational design and X-ray crystallographic analyses of two symmetrical allosteric effectors of hemoglobin (Hb) are reported. Compound design was directed by the previously solved co-crystal structure of one of the most potent allosteric effectors of Hb, 2-[4-[(3,5-dichlorophenylcarbamoyl)-methyl]-phenoxy]-2-methylpropionic acid (RSR4), which revealed two distinct binding sites for this compound in the Hb central water cavity. The primary binding site has been observed for all compounds of this structural class, which stabilize deoxy Hb by engaging in inter-dimer contacts with three of the four protein subunits. Interactions at the secondary binding site of RSR4 occur primarily between the beta(1) and beta(2) subunits and serve to further constrain the deoxy state. Based on these observations, it was hypothesized that compounds with the ability to simultaneously span and link both of these sites would possess increased potency, but at a lower molar concentration than RSR4. Two symmetrical compounds were designed and synthesized based on this hypothesis. The symmetrical effector approach was taken to minimize the number of compound orientations needed to successfully bind at either of the distinct allosteric sites. X-ray crystallographic analyses of these two effectors in complex with Hb revealed that they successfully spanned the RSR4 primary and secondary binding sites. However, the designed compounds interacted with the secondary binding site in such a way that intra-dimer, as opposed to inter-dimer, interactions were generated. In agreement with these observations, in vitro evaluation of the symmetrical effectors in Hb solution indicated that neither compound possessed the potency of RSR4. A detailed analysis of symmetrical effector-Hb contacts and comparisons with the binding contacts of RSR4 are discussed. X-ray crystallographic analyses of symmetrical allosteric effectors of hemoglobin: compounds designed to link primary and secondary binding sites.,Safo MK, Boyiri T, Burnett JC, Danso-Danquah R, Moure CM, Joshi GS, Abraham DJ Acta Crystallogr D Biol Crystallogr. 2002 Apr;58(Pt 4):634-44. Epub 2002, Mar 22. PMID:11914488[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|