1luj
Crystal Structure of the Beta-catenin/ICAT ComplexCrystal Structure of the Beta-catenin/ICAT Complex
Structural highlights
Disease[CTNB1_HUMAN] Defects in CTNNB1 are associated with colorectal cancer (CRC) [MIM:114500]. Note=Activating mutations in CTNNB1 have oncogenic activity resulting in tumor development. Somatic mutations are found in various tumor types, including colon cancers, ovarian and prostate carcinomas, hepatoblastoma (HB), hepatocellular carcinoma (HCC). HBs are malignant embryonal tumors mainly affecting young children in the first three years of life. Defects in CTNNB1 are a cause of pilomatrixoma (PTR) [MIM:132600]; a common benign skin tumor.[1] [2] [3] Defects in CTNNB1 are a cause of medulloblastoma (MDB) [MIM:155255]. MDB is a malignant, invasive embryonal tumor of the cerebellum with a preferential manifestation in children.[4] [5] Defects in CTNNB1 are a cause of susceptibility to ovarian cancer (OC) [MIM:167000]. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Note=A chromosomal aberration involving CTNNB1 is found in salivary gland pleiomorphic adenomas, the most common benign epithelial tumors of the salivary gland. Translocation t(3;8)(p21;q12) with PLAG1. Defects in CTNNB1 may be a cause of mesothelioma malignant (MESOM) [MIM:156240]. An aggressive neoplasm of the serosal lining of the chest. It appears as broad sheets of cells, with some regions containing spindle-shaped, sarcoma-like cells and other regions showing adenomatous patterns. Pleural mesotheliomas have been linked to exposure to asbestos.[6] Function[CTNB1_HUMAN] Key downstream component of the canonical Wnt signaling pathway. In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes. Involved in the regulation of cell adhesion. Acts as a negative regulator of centrosome cohesion. Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization. Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2.[7] [8] [9] [10] [CNBP1_HUMAN] Prevents the interaction between CTNNB1 and TCF family members, and acts as negative regulator of the Wnt signaling pathway. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBeta-catenin is a multifunctional protein involved in both cell adhesion and transcriptional activation. Transcription mediated by the beta-catenin/Tcf complex is involved in embryological development and is upregulated in various cancers. We have determined the crystal structure at 2.5 A resolution of a complex between beta-catenin and ICAT, a protein that prevents the interaction between beta-catenin and Tcf/Lef family transcription factors. ICAT contains a 3-helix bundle that binds armadillo repeats 10-12 and a C-terminal tail that, similar to Tcf and E-cadherin, binds in the groove formed by armadillo repeats 5-9 of beta-catenin. We show that ICAT selectively inhibits beta-catenin/Tcf binding in vivo, without disrupting beta-catenin/cadherin interactions. Thus, it should be possible to design cancer therapeutics that inhibit beta-catenin-mediated transcriptional activation without interfering with cell adhesion. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT.,Graham TA, Clements WK, Kimelman D, Xu W Mol Cell. 2002 Sep;10(3):563-71. PMID:12408824[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|