3drb
Crystal structure of Human Brain-type Creatine KinaseCrystal structure of Human Brain-type Creatine Kinase
Structural highlights
Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedCreatine kinase is a member of the phosphagen kinase family, which catalyzes the reversible phosphoryl transfer reaction that occurs between ATP and creatine to produce ADP and phosphocreatine. Here, three structural aspects of human-brain-type-creatine-kinase (hBB-CK) were identified by X-ray crystallography: the ligand-free-form at 2.2A; the ADP-Mg2+, nitrate, and creatine complex (transition-state-analogue complex; TSAC); and the ADP-Mg2+-complex at 2.0A. The structures of ligand-bound hBB-CK revealed two different monomeric states in a single homodimer. One monomer is a closed form, either bound to TSAC or the ADP-Mg2+-complex, and the second monomer is an unliganded open form. These structural studies provide a detailed mechanism indicating that the binding of ADP-Mg2+ alone may trigger conformational changes in hBB-CK that were not observed with muscle-type-CK. Structural studies of human brain-type creatine kinase complexed with the ADP-Mg2+-NO3- -creatine transition-state analogue complex.,Bong SM, Moon JH, Nam KH, Lee KS, Chi YM, Hwang KY FEBS Lett. 2008 Nov 26;582(28):3959-65. Epub 2008 Oct 31. PMID:18977227[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|