THE STRUCTURE OF ESCHERICHIA COLI NITROREDUCTASE COMPLEXED WITH NICOTINIC ACIDTHE STRUCTURE OF ESCHERICHIA COLI NITROREDUCTASE COMPLEXED WITH NICOTINIC ACID

Structural highlights

1icv is a 4 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:,
NonStd Res:
Related:1icr, 1icu
Gene:NFSB (Escherichia coli)
Activity:6,7-dihydropteridine reductase, with EC number 1.5.1.34
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Escherichia coli nitroreductase is a flavoprotein that reduces a variety of quinone and nitroaromatic substrates. Its ability to convert relatively non-toxic prodrugs such as CB1954 (5-[aziridin-1-yl]-2,4-dinitrobenzamide) into highly cytotoxic derivatives has led to interest in its potential for cancer gene therapy. We have determined the structure of the enzyme bound to a substrate analogue, nicotinic acid, from three crystal forms at resolutions of 1.7 A, 1.8 A and 2.4 A, representing ten non-crystallographically related monomers. The enzyme is dimeric, and has a large hydrophobic core; each half of the molecule consists of a five-stranded beta-sheet surrounded by alpha-helices. Helices F and F protrude from the core region of each monomer. There is an extensive dimer interface, and the 15 C-terminal residues extend around the opposing monomer, contributing the fifth beta-strand. The active sites lie on opposite sides of the molecule, in solvent-exposed clefts at the dimer interface. The FMN forms hydrogen bonds to one monomer and hydrophobic contacts to both; its si face is buried. The nicotinic acid stacks between the re face of the FMN and Phe124 in helix F, with only one hydrogen bond to the protein. If the nicotinamide ring of the coenzyme NAD(P)H were in the same position as that of the nicotinic acid ligand, its C4 atom would be optimally positioned for direct hydride transfer to flavin N5. Comparison of the structure with unliganded flavin reductase and NTR suggests reduced mobility of helices E and F upon ligand binding. Analysis of the structure explains the broad substrate specificity of the enzyme, and provides the basis for rational design of novel prodrugs and for site-directed mutagenesis for improved enzyme activity.

The structure of Escherichia coli nitroreductase complexed with nicotinic acid: three crystal forms at 1.7 A, 1.8 A and 2.4 A resolution.,Lovering AL, Hyde EI, Searle PF, White SA J Mol Biol. 2001 May 25;309(1):203-13. PMID:11491290[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Lovering AL, Hyde EI, Searle PF, White SA. The structure of Escherichia coli nitroreductase complexed with nicotinic acid: three crystal forms at 1.7 A, 1.8 A and 2.4 A resolution. J Mol Biol. 2001 May 25;309(1):203-13. PMID:11491290 doi:10.1006/jmbi.2001.4653

1icv, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA