1a8k

From Proteopedia
Revision as of 11:36, 23 July 2014 by OCA (talk | contribs)
Jump to navigation Jump to search

CRYSTALLOGRAPHIC ANALYSIS OF HUMAN IMMUNODEFICIENCY VIRUS 1 PROTEASE WITH AN ANALOG OF THE CONSERVED CA-P2 SUBSTRATE: INTERACTIONS WITH FREQUENTLY OCCURRING GLUTAMIC ACID RESIDUE AT P2' POSITION OF SUBSTRATESCRYSTALLOGRAPHIC ANALYSIS OF HUMAN IMMUNODEFICIENCY VIRUS 1 PROTEASE WITH AN ANALOG OF THE CONSERVED CA-P2 SUBSTRATE: INTERACTIONS WITH FREQUENTLY OCCURRING GLUTAMIC ACID RESIDUE AT P2' POSITION OF SUBSTRATES

Structural highlights

1a8k is a 4 chain structure with sequence from Human immunodeficiency virus 1. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Activity:HIV-1 retropepsin, with EC number 3.4.23.16
Resources:FirstGlance, OCA, RCSB, PDBsum

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human immunodeficiency virus type 1 (HIV-1) protease hydrolysis of the Gag CA-p2 cleavage site is crucial for virion maturation and is optimal at acidic pH. To understand the processing of the CA-p2 site, we have determined the structure of HIV-1 protease complexed with an analog of the CA-p2 site, the reduced peptide inhibitor Arg-Val-Leu-r-Phe-Glu-Ala-Ahx-NH2 [r denotes the reduced peptide bond and Ahx 2-aminohexanoic acid (norleucine), respectively]. The crystal structure was refined to an R-factor of 0.17 at 0.21-nm resolution. The crystals have nearly the same lattice as related complexes in P2(1)2(1)2(1) which have twofold disordered inhibitor, but are in space group P2(1). and the asymmetric unit contains two dimers of HIV-1 protease related by 180 degrees rotation. An approximate non-crystallographic symmetry has replaced the exact crystal symmetry resulting in well-ordered inhibitor structure. Each protease dimer binds one ordered inhibitor molecule, but in opposite orientations. The interactions of the inhibitor with the two dimers are very similar for the central P2 Val to P2' Glu residues, but show more variation for the distal P3 Arg and P4' Ahx residues. Importantly, the carboxylate oxygens of Glu at P2' in the inhibitor are within hydrogen-bonding distance of a carboxylate oxygen of Asp30 of the protease suggesting that the two side chains share a proton. This interaction suggests that the enzyme-substrate complex is additionally stabilized at lower pH. The importance of this interaction is emphasized by the absence of polymorphisms of Asp30 in the protease and variants of P2' Glu in the critical CA-p2 cleavage site.

Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.,Weber IT, Wu J, Adomat J, Harrison RW, Kimmel AR, Wondrak EM, Louis JM Eur J Biochem. 1997 Oct 15;249(2):523-30. PMID:9370363[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Weber IT, Wu J, Adomat J, Harrison RW, Kimmel AR, Wondrak EM, Louis JM. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. Eur J Biochem. 1997 Oct 15;249(2):523-30. PMID:9370363

1a8k, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA