3zy7
Crystal structure of computationally redesigned gamma-adaptin appendage domain forming a symmetric homodimerCrystal structure of computationally redesigned gamma-adaptin appendage domain forming a symmetric homodimer
Structural highlights
Publication Abstract from PubMedComputational design of novel protein-protein interfaces is a test of our understanding of protein interactions and has the potential to allow modification of cellular physiology. Methods for designing high-affinity interactions that adopt a predetermined binding mode have proved elusive, suggesting the need for new strategies that simplify the design process. A solvent-exposed backbone on a beta-strand is thought of as "sticky" and beta-strand pairing stabilizes many naturally occurring protein complexes. Here, we computationally redesign a monomeric protein to form a symmetric homodimer by pairing exposed beta-strands to form an intermolecular beta-sheet. A crystal structure of the designed complex closely matches the computational model (rmsd = 1.0 A). This work demonstrates that beta-strand pairing can be used to computationally design new interactions with high accuracy. Computational design of a symmetric homodimer using beta-strand assembly.,Stranges PB, Machius M, Miley MJ, Tripathy A, Kuhlman B Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20562-7. Epub 2011 Dec 5. PMID:22143762[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|