2pme

From Proteopedia
Revision as of 05:19, 25 March 2013 by OCA (talk | contribs)
Jump to navigation Jump to search

Template:STRUCTURE 2pme

The Apo crystal Structure of the glycyl-tRNA synthetaseThe Apo crystal Structure of the glycyl-tRNA synthetase

Template:ABSTRACT PUBMED 17545306

DiseaseDisease

[SYG_HUMAN] Defects in GARS are the cause of Charcot-Marie-Tooth disease type 2D (CMT2D) [MIM:601472]. CMT2D is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathy or CMT1, and primary peripheral axonal neuropathy or CMT2. Neuropathies of the CMT2 group are characterized by signs of axonal regeneration in the absence of obvious myelin alterations, normal or slightly reduced nerve conduction velocities, and progressive distal muscle weakness and atrophy. CMT2D is characterized by a more severe phenotype in the upper extremities (severe weakness and atrophy, absence of tendon reflexes) than in the lower limbs. CMT2D inheritance is autosomal dominant.[1] Defects in GARS are a cause of distal hereditary motor neuronopathy type 5A (HMN5A) [MIM:600794]; also known as distal hereditary motor neuropathy type V (DSMAV). A disorder characterized by distal muscular atrophy mainly affecting the upper extremities, in contrast to other distal motor neuronopathies. These constitute a heterogeneous group of neuromuscular diseases caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.[2]

FunctionFunction

[SYG_HUMAN] Catalyzes the attachment of glycine to tRNA(Gly). Is also able produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs.[3]

About this StructureAbout this Structure

2pme is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See AlsoSee Also

ReferenceReference

[xtra 1]

  1. Xie W, Nangle LA, Zhang W, Schimmel P, Yang XL. Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9976-81. Epub 2007 Jun 1. PMID:17545306
  1. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003 May;72(5):1293-9. Epub 2003 Apr 10. PMID:12690580 doi:10.1086/375039
  2. Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee-Lin SQ, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, Funalot B, Vance JM, Goldfarb LG, Fischbeck KH, Green ED. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet. 2003 May;72(5):1293-9. Epub 2003 Apr 10. PMID:12690580 doi:10.1086/375039
  3. Guo RT, Chong YE, Guo M, Yang XL. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis. J Biol Chem. 2009 Oct 16;284(42):28968-76. Epub 2009 Aug 26. PMID:19710017 doi:10.1074/jbc.M109.030692

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA