4dt7
Crystal structure of thrombin bound to the activation domain QEDQVDPRLIDGKMTRRGDS of protein CCrystal structure of thrombin bound to the activation domain QEDQVDPRLIDGKMTRRGDS of protein C
Template:ABSTRACT PUBMED 22535660
DiseaseDisease
[THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1][2][3][4][5][6][7][8][9][10][11][12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14] [PROC_HUMAN] Defects in PROC are the cause of thrombophilia due to protein C deficiency, autosomal dominant (THPH3) [MIM:176860]. A hemostatic disorder characterized by impaired regulation of blood coagulation and a tendency to recurrent venous thrombosis. However, many adults with heterozygous disease may be asymptomatic. Individuals with decreased amounts of protein C are classically referred to as having type I protein C deficiency and those with normal amounts of a functionally defective protein as having type II deficiency.[15][16][17][18][19][20][21][22][23][24][25][26][27][28] Defects in PROC are the cause of thrombophilia due to protein C deficiency, autosomal recessive (THPH4) [MIM:612304]. A hemostatic disorder characterized by impaired regulation of blood coagulation and a tendency to recurrent venous thrombosis. It results in a thrombotic condition that can manifest as a severe neonatal disorder or as a milder disorder with late-onset thrombophilia. The severe form leads to neonatal death through massive neonatal venous thrombosis. Often associated with ecchymotic skin lesions which can turn necrotic called purpura fulminans, this disorder is very rare.
FunctionFunction
[THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[29] [PROC_HUMAN] Protein C is a vitamin K-dependent serine protease that regulates blood coagulation by inactivating factors Va and VIIIa in the presence of calcium ions and phospholipids.
About this StructureAbout this Structure
4dt7 is a 6 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.
See AlsoSee Also
ReferenceReference
- ↑ Pozzi N, Barranco-Medina S, Chen Z, Di Cera E. Exposure of R169 controls protein C activation and autoactivation. Blood. 2012 Apr 24. PMID:22535660 doi:10.1182/blood-2012-03-415323
- ↑ Pineda AO, Carrell CJ, Bush LA, Prasad S, Caccia S, Chen ZW, Mathews FS, Di Cera E. Molecular dissection of Na+ binding to thrombin. J Biol Chem. 2004 Jul 23;279(30):31842-53. Epub 2004 May 19. PMID:15152000 doi:http://dx.doi.org/10.1074/jbc.M401756200
- ↑ Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
- ↑ Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
- ↑ Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
- ↑ Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
- ↑ Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
- ↑ Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
- ↑ Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
- ↑ Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
- ↑ Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
- ↑ Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
- ↑ James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
- ↑ Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
- ↑ Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
- ↑ Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
- ↑ Miyata T, Zheng YZ, Sakata T, Kato H. Protein C Osaka 10 with aberrant propeptide processing: loss of anticoagulant activity due to an amino acid substitution in the protein C precursor. Thromb Haemost. 1995 Oct;74(4):1003-8. PMID:8560401
- ↑ Romeo G, Hassan HJ, Staempfli S, Roncuzzi L, Cianetti L, Leonardi A, Vicente V, Mannucci PM, Bertina R, Peschle C, et al.. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene. Proc Natl Acad Sci U S A. 1987 May;84(9):2829-32. PMID:2437584
- ↑ Grundy C, Chitolie A, Talbot S, Bevan D, Kakkar V, Cooper DN. Protein C London 1: recurrent mutation at Arg 169 (CGG----TGG) in the protein C gene causing thrombosis. Nucleic Acids Res. 1989 Dec 25;17(24):10513. PMID:2602169
- ↑ Reitsma PH, Poort SR, Allaart CF, Briet E, Bertina RM. The spectrum of genetic defects in a panel of 40 Dutch families with symptomatic protein C deficiency type I: heterogeneity and founder effects. Blood. 1991 Aug 15;78(4):890-4. PMID:1868249
- ↑ Bovill EG, Tomczak JA, Grant B, Bhushan F, Pillemer E, Rainville IR, Long GL. Protein CVermont: symptomatic type II protein C deficiency associated with two GLA domain mutations. Blood. 1992 Mar 15;79(6):1456-65. PMID:1347706
- ↑ Grundy CB, Schulman S, Tengborn L, Kakkar VV, Cooper DN. Two different missense mutations at Arg 178 of the protein C (PROC) gene causing recurrent venous thrombosis. Hum Genet. 1992 Aug;89(6):685-6. PMID:1511989
- ↑ Gandrille S, Vidaud M, Aiach M, Alhenc-Gelas M, Fischer AM, Gouault-Heilman M, Toulon P, Fiessinger JN, Goossens M. Two novel mutations responsible for hereditary type I protein C deficiency: characterization by denaturing gradient gel electrophoresis. Hum Mutat. 1992;1(6):491-500. PMID:1301959 doi:http://dx.doi.org/10.1002/humu.1380010607
- ↑ Millar DS, Grundy CB, Bignell P, Moffat EH, Martin R, Kakkar VV, Cooper DN. A Gla domain mutation (Arg 15-->Trp) in the protein C (PROC) gene causing type 2 protein C deficiency and recurrent venous thrombosis. Blood Coagul Fibrinolysis. 1993 Apr;4(2):345-7. PMID:8499568
- ↑ Tsay W, Greengard JS, Montgomery RR, McPherson RA, Fucci JC, Koerper MA, Coughlin J, Griffin JH. Genetic mutations in ten unrelated American patients with symptomatic type 1 protein C deficiency. Blood Coagul Fibrinolysis. 1993 Oct;4(5):791-6. PMID:8292730
- ↑ Marchetti G, Patracchini P, Gemmati D, Castaman G, Rodeghiero F, Wacey A, Cooper DN, Tuddenham EG, Bernardi F. Symptomatic type II protein C deficiency caused by a missense mutation (Gly 381-->Ser) in the substrate-binding pocket. Br J Haematol. 1993 Jun;84(2):285-9. PMID:8398832
- ↑ Zheng YZ, Sakata T, Matsusue T, Umeyama H, Kato H, Miyata T. Six missense mutations associated with type I and type II protein C deficiency and implications obtained from molecular modelling. Blood Coagul Fibrinolysis. 1994 Oct;5(5):687-96. PMID:7865674
- ↑ Lind B, Schwartz M, Thorsen S. Six different point mutations in seven Danish families with symptomatic protein C deficiency. Thromb Haemost. 1995 Feb;73(2):186-93. PMID:7792728
- ↑ Ireland HA, Boisclair MD, Taylor J, Thompson E, Thein SL, Girolami A, De Caterina M, Scopacasa F, De Stefano V, Leone G, Finazzi G, Cohen H, Lane DA. Two novel (R(-11)C; T394D) and two repeat missense mutations in the protein C gene associated with venous thrombosis in six kindreds. Hum Mutat. 1996;7(2):176-9. PMID:8829639 doi:<176::AID-HUMU16>3.0.CO;2-# 10.1002/(SICI)1098-1004(1996)7:2<176::AID-HUMU16>3.0.CO;2-#
- ↑ Couture P, Demers C, Morissette J, Delage R, Jomphe M, Couture L, Simard J. Type I protein C deficiency in French Canadians: evidence of a founder effect and association of specific protein C gene mutations with plasma protein C levels. Thromb Haemost. 1998 Oct;80(4):551-6. PMID:9798967
- ↑ Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554