1sx2

From Proteopedia
Revision as of 16:06, 21 February 2008 by OCA (talk | contribs)
Jump to navigation Jump to search
File:1sx2.jpg


1sx2, resolution 1.06Å

Drag the structure with the mouse to rotate

Use of a Halide Binding Site to Bypass the 1000-atom Limit to Structure Determination by Direct Methods

OverviewOverview

Proteins with more than 1000 non-H atoms and without heavy-atom prosthetic groups are very difficult to solve by ab initio direct methods. T4 lysozyme is being used to explore these limits. The protein has 1309 non-H atoms, seven S atoms, no disulfide bonds and no heavy-atom prosthetic group. It is recalcitrant to structure determination by direct methods using X-ray diffraction data to 0.97 A. It is shown here that it is possible to obtain a truly ab initio structure determination of a variant of the protein that has an Rb+ (Z = 37) binding site. Using diffraction data to 1.06 A resolution, the direct-methods programs SIR2002 and ACORN independently solved the structure in about 20 h. The bound Rb+, which contributes about 1.7% of the total scattering, does not appear to distort the structure or to inhibit refinement (R factor 12.1%). The phases obtained via SIR2002 or ACORN are in good agreement with those from a reference structure obtained from conventional molecular-substitution and refinement procedures (average error in the figure-of-merit-weighted phases of less than 25 degrees). Thus, proteins with more than 1000 atoms that include halide-binding or other such sites may be amenable to structure determination by ab initio direct methods. The direct-methods approaches are also compared with structure determination via use of the anomalous scattering of the Rb+ ion. As shown by examples, high-resolution structures determined by direct methods can be useful in highlighting regions of strain in the protein, including short hydrogen bonds and non-planar peptide groups.

About this StructureAbout this Structure

1SX2 is a Single protein structure of sequence from Bacteriophage t4 with , and as ligands. Active as Lysozyme, with EC number 3.2.1.17 Full crystallographic information is available from OCA.

ReferenceReference

Use of an ion-binding site to bypass the 1000-atom limit to structure determination by direct methods., Mooers BH, Matthews BW, Acta Crystallogr D Biol Crystallogr. 2004 Oct;60(Pt 10):1726-37. Epub 2004, Sep 23. PMID:15388918

Page seeded by OCA on Thu Feb 21 15:06:14 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA