1fsq

From Proteopedia
Revision as of 13:42, 21 February 2008 by OCA (talk | contribs)
Jump to navigation Jump to search
File:1fsq.gif


1fsq, resolution 2.Å

Drag the structure with the mouse to rotate

X-RAY CRYSTAL STRUCTURE OF COBALT-BOUND F93S/F95L/W97M CARBONIC ANHYDRASE (CAII) VARIANT

OverviewOverview

Aromatic residues in the hydrophobic core of human carbonic anhydrase II (CAII) influence metal ion binding in the active site. Residues F93, F95, and W97 are contained in a beta-strand that also contains two zinc ligands, H94 and H96. The aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitution of these aromatic amino acids with smaller side chains enhances Cu(2+) affinity while decreasing Co(2+) and Zn(2+) affinity [Hunt, J. A., Mahiuddin, A., & Fierke, C. A. (1999) Biochemistry 38, 9054-9062]. Here, X-ray crystal structures of zinc-bound F93I/F95M/W97V and F93S/F95L/W97M CAIIs reveal the introduction of new cavities in the hydrophobic core, compensatory movements of surrounding side chains, and the incorporation of buried water molecules; nevertheless, the enzyme maintains tetrahedral zinc coordination geometry. However, a conformational change of direct metal ligand H94 as well as indirect (i.e., "second-shell") ligand Q92 accompanies metal release in both F93I/F95M/W97V and F93S/F95L/W97M CAIIs, thereby eliminating preorientation of the histidine ligands with tetrahedral geometry in the apoenzyme. Only one cobalt-bound variant, F93I/F95M/W97V CAII, maintains tetrahedral metal coordination geometry; F93S/F95L/W97M CAII binds Co(2+) with trigonal bipyramidal coordination geometry due to the addition of azide anion to the metal coordination polyhedron. The copper-bound variants exhibit either square pyramidal or trigonal bipyramidal metal coordination geometry due to the addition of a second solvent molecule to the metal coordination polyhedron. The key finding of this work is that aromatic core residues serve as anchors that help to preorient direct and second-shell ligands to optimize zinc binding geometry and destabilize alternative geometries. These geometrical constraints are likely a main determinant of the enhanced zinc/copper specificity of CAII as compared to small molecule chelators.

DiseaseDisease

Known disease associated with this structure: Osteopetrosis, autosomal recessive 3, with renal tubular acidosis OMIM:[611492]

About this StructureAbout this Structure

1FSQ is a Single protein structure of sequence from Homo sapiens with as ligand. Active as Carbonate dehydratase, with EC number 4.2.1.1 Full crystallographic information is available from OCA.

ReferenceReference

Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II., Cox JD, Hunt JA, Compher KM, Fierke CA, Christianson DW, Biochemistry. 2000 Nov 14;39(45):13687-94. PMID:11076507

Page seeded by OCA on Thu Feb 21 12:42:15 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA