Sandbox Reserved 346
This Sandbox is Reserved from January 10, 2010, through April 10, 2011 for use in BCMB 307-Proteins course taught by Andrea Gorrell at the University of Northern British Columbia, Prince George, BC, Canada. |
To get started:
More help: Help:Editing |
| |||||||||
1b4x, resolution 2.45Å () | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ligands: | , | ||||||||
Activity: | Aspartate transaminase, with EC number 2.6.1.1 | ||||||||
| |||||||||
| |||||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||||
Coordinates: | save as pdb, mmCIF, xml |
Aspartate AminotransferaseAspartate Aminotransferase
General InformationGeneral Information
Aspartate Aminotransferase (AST), also know as Glutamic aspartic transaminase, glutamic oxaloacetic transaminase, and transaminase A., is an enzyme that is a member of the class-I pyridoxal-phosphate-dependent aminotransferase family.It is coded by the gene GOT1. It is a homodimer that is 413 amino acids long and serves a critical role in amino acid metabolism. Within prokaryote cells it is exclusively found in the cytosol, but in eukaryotic cells there are cytosol, mitochondrial, and chloroplast isozymes.
In the human body it is produced by the brain, skeletal muscles, liver, pancreas, red blood cells, and kidneys. The wide range of tissues in which it is made, separates it from the similar enzyme alanine transaminase (ALT) which is found primarily in the liver. The level of AST in the body can be used as a marker for tissue disease or damage. As well, AST and ALT levels can be compared to pinpoint whether tissue damage is primarily found within the liver.