Citrate Synthase

From Proteopedia
Jump to navigation Jump to search

The Structure and Mechanism of Citrate SynthaseThe Structure and Mechanism of Citrate Synthase

Citrate Synthase Closed Form

Drag the structure with the mouse to rotate

Citrate Synthase Open Form

Drag the structure with the mouse to rotate

Citrate synthase is an enzyme active in the mitochondria, where it is responsible for catalyzing the first reaction of the citric acid cycle (Krebs Cycle): the condensation of acetyl-CoA and oxaloacetate to form citrate. The standard free energy change (ΔG°’) for the citrate synthase reaction is -31.5kJ/mol [1].

Structure: Citrate synthase is a single amino acid chain . Biologically, however, it exists as a . Each identical subunit consists of a large and a small domain, and is comprised almost entirely of α helices (making it an all α protein). In its free enzyme state, citrate synthase exists in “open” form, with its two domains forming a cleft containing the substrate (oxaloacetate) binding site (PDB: 1cts) [2]. When oxaloacetate binds, the smaller domain undergoes an 18° rotation, sealing the oxaloacetate binding site and resulting in the (PDB: 2cts). This conformational change not only prevents solvent from reaching the bound substrate, but also generates the acetyl-CoA binding site. This presence of “open” and “closed” forms results in citrate synthase having Ordered Sequential kinetic behavior [1].

Mechanism: The reaction mechanism for citrate synthase was proposed by James Remington. In this mechanism, three ionizable side chains in the of citrate synthase participate in acid-base catalysis: His 274, His 320, and Asp 375. First, (a base) removes a proton from the methyl group of acetyl-CoA to form its enol. stabilizes the acetyl-CoA enolate by forming a hydrogen bond with the enolate oxygen. The enolate then nucleophilically attacks oxaloacetate’s carbonyl carbon, and donates a proton to oxaloacetate’s carbonyl group in a concerted step, forming citryl-CoA (which remains bound to the enzyme). Finally, citryl-CoA is hydrolyzed to citrate and CoA.

  1. 1.0 1.1 Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. Hoboken, NJ: Wiley, 2008.
  2. Remington S, Wiegand G, Huber R. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol. 1982 Jun 15;158(1):111-52. PMID:7120407

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

Daniel Eddelman, David Canner, Wayne Decatur, Michal Harel, Eric Martz, Alexander Berchansky, Angel Herraez, Joel L. Sussman