Mitochondrial complex I from Mus musculus in the active stateMitochondrial complex I from Mus musculus in the active state

Structural highlights

8om1 is a 11 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.39Å
Ligands:, , , , , , , , , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NU5M_MOUSE Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity).

Publication Abstract from PubMed

Respiratory complex I, a key enzyme in mammalian metabolism, captures the energy released by reduction of ubiquinone by NADH to drive protons across the inner mitochondrial membrane, generating the proton-motive force for ATP synthesis. Despite remarkable advances in structural knowledge of this complicated membrane-bound enzyme, its mechanism of catalysis remains controversial. In particular, how ubiquinone reduction is coupled to proton pumping and the pathways and mechanisms of proton translocation are contested. We present a 2.4-A resolution cryo-EM structure of complex I from mouse heart mitochondria in the closed, active (ready-to-go) resting state, with 2945 water molecules modeled. By analyzing the networks of charged and polar residues and water molecules present, we evaluate candidate pathways for proton transfer through the enzyme, for the chemical protons for ubiquinone reduction, and for the protons transported across the membrane. Last, we compare our data to the predictions of extant mechanistic models, and identify key questions to answer in future work to test them.

Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I.,Grba DN, Chung I, Bridges HR, Agip AA, Hirst J Sci Adv. 2023 Aug 2;9(31):eadi1359. doi: 10.1126/sciadv.adi1359. Epub 2023 Aug 2. PMID:37531432[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Grba DN, Chung I, Bridges HR, Agip AA, Hirst J. Investigation of hydrated channels and proton pathways in a high-resolution cryo-EM structure of mammalian complex I. Sci Adv. 2023 Aug 2;9(31):eadi1359. PMID:37531432 doi:10.1126/sciadv.adi1359

8om1, resolution 2.39Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA