Prefusion RSV F Bound to Lonafarnib and D25 FabPrefusion RSV F Bound to Lonafarnib and D25 Fab

Structural highlights

8kg5 is a 5 chain structure with sequence from Escherichia virus T4, Homo sapiens and Human respiratory syncytial virus A2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 3.17Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

WAC_BPT4 Chaperone responsible for attachment of long tail fibers to virus particle. Forms the fibrous structure on the neck of the virion called whiskers. During phage assembly, 6 fibritin molecules attach to each virion neck through their N-terminal domains, to form a collar with six fibers ('whiskers').FUS_HRSVA Class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and plasma cell membrane fusion, the heptad repeat (HR) regions assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and plasma cell membranes. Directs fusion of viral and cellular membranes leading to delivery of the nucleocapsid into the cytoplasm. This fusion is pH independent and occurs directly at the outer cell membrane. The trimer of F1-F2 (protein F) interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and interacts with the cellular membrane, inducing the fusion between host cell and virion membranes. Notably, RSV fusion protein is able to interact directly with heparan sulfate and therefore actively participates in virus attachment. Furthermore, the F2 subunit was identifed as the major determinant of RSV host cell specificity. Later in infection, proteins F expressed at the plasma membrane of infected cells mediate fusion with adjacent cells to form syncytia, a cytopathic effect that could lead to tissue necrosis. The fusion protein is also able to trigger p53-dependent apoptosis.[1] [2]

References

  1. Schlender J, Zimmer G, Herrler G, Conzelmann KK. Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J Virol. 2003 Apr;77(8):4609-16. PMID:12663767
  2. Eckardt-Michel J, Lorek M, Baxmann D, Grunwald T, Keil GM, Zimmer G. The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol. 2008 Apr;82(7):3236-49. Epub 2008 Jan 23. PMID:18216092 doi:JVI.01887-07

8kg5, resolution 3.17Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA