Crystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H330, a Helicon PolypeptideCrystal structure of beta-catenin and the MDM2 p53-binding domain in complex with H330, a Helicon Polypeptide

Structural highlights

8eic is a 3 chain structure with sequence from Homo sapiens and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.62Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CTNB1_HUMAN Defects in CTNNB1 are associated with colorectal cancer (CRC) [MIM:114500. Note=Activating mutations in CTNNB1 have oncogenic activity resulting in tumor development. Somatic mutations are found in various tumor types, including colon cancers, ovarian and prostate carcinomas, hepatoblastoma (HB), hepatocellular carcinoma (HCC). HBs are malignant embryonal tumors mainly affecting young children in the first three years of life. Defects in CTNNB1 are a cause of pilomatrixoma (PTR) [MIM:132600; a common benign skin tumor.[1] [2] [3] Defects in CTNNB1 are a cause of medulloblastoma (MDB) [MIM:155255. MDB is a malignant, invasive embryonal tumor of the cerebellum with a preferential manifestation in children.[4] [5] Defects in CTNNB1 are a cause of susceptibility to ovarian cancer (OC) [MIM:167000. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Note=A chromosomal aberration involving CTNNB1 is found in salivary gland pleiomorphic adenomas, the most common benign epithelial tumors of the salivary gland. Translocation t(3;8)(p21;q12) with PLAG1. Defects in CTNNB1 may be a cause of mesothelioma malignant (MESOM) [MIM:156240. An aggressive neoplasm of the serosal lining of the chest. It appears as broad sheets of cells, with some regions containing spindle-shaped, sarcoma-like cells and other regions showing adenomatous patterns. Pleural mesotheliomas have been linked to exposure to asbestos.[6]

Function

CTNB1_HUMAN Key downstream component of the canonical Wnt signaling pathway. In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes. Involved in the regulation of cell adhesion. Acts as a negative regulator of centrosome cohesion. Involved in the CDK2/PTPN6/CTNNB1/CEACAM1 pathway of insulin internalization. Blocks anoikis of malignant kidney and intestinal epithelial cells and promotes their anchorage-independent growth by down-regulating DAPK2.[7] [8] [9] [10]

Publication Abstract from PubMed

Molecules that induce novel interactions between proteins hold great promise for the study of biological systems and the development of therapeutics, but their discovery has been limited by the complexities of rationally designing interactions between three components, and because known binders to each protein are typically required to inform initial designs. Here, we report a general and rapid method for discovering alpha-helically constrained (Helicon) polypeptides that cooperatively induce the interaction between two target proteins without relying on previously known binders or an intrinsic affinity between the proteins. We show that Helicons are capable of binding every major class of E3 ubiquitin ligases, which are of great biological and therapeutic interest but remain largely intractable to targeting by small molecules. We then describe a phage-based screening method for discovering "trimerizer" Helicons, and apply it to reprogram E3s to cooperatively bind an enzyme (PPIA), a transcription factor (TEAD4), and a transcriptional coactivator (beta-catenin).

Recognition and reprogramming of E3 ubiquitin ligase surfaces by alpha-helical peptides.,Tokareva OS, Li K, Travaline TL, Thomson TM, Swiecicki JM, Moussa M, Ramirez JD, Litchman S, Verdine GL, McGee JH Nat Commun. 2023 Nov 1;14(1):6992. doi: 10.1038/s41467-023-42395-z. PMID:37914719[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Moreno-Bueno G, Gamallo C, Perez-Gallego L, Contreras F, Palacios J. beta-catenin expression in pilomatrixomas. Relationship with beta-catenin gene mutations and comparison with beta-catenin expression in normal hair follicles. Br J Dermatol. 2001 Oct;145(4):576-81. PMID:11703283
  2. van Noort M, van de Wetering M, Clevers H. Identification of two novel regulated serines in the N terminus of beta-catenin. Exp Cell Res. 2002 Jun 10;276(2):264-72. PMID:12027456 doi:10.1006/excr.2002.5520
  3. Chan EF, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in beta-catenin. Nat Genet. 1999 Apr;21(4):410-3. PMID:10192393 doi:10.1038/7747
  4. van Noort M, van de Wetering M, Clevers H. Identification of two novel regulated serines in the N terminus of beta-catenin. Exp Cell Res. 2002 Jun 10;276(2):264-72. PMID:12027456 doi:10.1006/excr.2002.5520
  5. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H. APC mutations in sporadic medulloblastomas. Am J Pathol. 2000 Feb;156(2):433-7. PMID:10666372
  6. Shigemitsu K, Sekido Y, Usami N, Mori S, Sato M, Horio Y, Hasegawa Y, Bader SA, Gazdar AF, Minna JD, Hida T, Yoshioka H, Imaizumi M, Ueda Y, Takahashi M, Shimokata K. Genetic alteration of the beta-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene. 2001 Jul 12;20(31):4249-57. PMID:11464291 doi:10.1038/sj.onc.1204557
  7. Lillehoj EP, Lu W, Kiser T, Goldblum SE, Kim KC. MUC1 inhibits cell proliferation by a beta-catenin-dependent mechanism. Biochim Biophys Acta. 2007 Jul;1773(7):1028-38. Epub 2007 Apr 22. PMID:17524503 doi:S0167-4889(07)00092-4
  8. Bahmanyar S, Kaplan DD, Deluca JG, Giddings TH Jr, O'Toole ET, Winey M, Salmon ED, Casey PJ, Nelson WJ, Barth AI. beta-Catenin is a Nek2 substrate involved in centrosome separation. Genes Dev. 2008 Jan 1;22(1):91-105. Epub 2007 Dec 17. PMID:18086858 doi:10.1101/gad.1596308
  9. Li H, Ray G, Yoo BH, Erdogan M, Rosen KV. Down-regulation of death-associated protein kinase-2 is required for beta-catenin-induced anoikis resistance of malignant epithelial cells. J Biol Chem. 2009 Jan 23;284(4):2012-22. doi: 10.1074/jbc.M805612200. Epub 2008, Oct 27. PMID:18957423 doi:10.1074/jbc.M805612200
  10. Fiset A, Xu E, Bergeron S, Marette A, Pelletier G, Siminovitch KA, Olivier M, Beauchemin N, Faure RL. Compartmentalized CDK2 is connected with SHP-1 and beta-catenin and regulates insulin internalization. Cell Signal. 2011 May;23(5):911-9. doi: 10.1016/j.cellsig.2011.01.019. Epub 2011 , Jan 22. PMID:21262353 doi:10.1016/j.cellsig.2011.01.019
  11. Tokareva OS, Li K, Travaline TL, Thomson TM, Swiecicki JM, Moussa M, Ramirez JD, Litchman S, Verdine GL, McGee JH. Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides. Nat Commun. 2023 Nov 1;14(1):6992. PMID:37914719 doi:10.1038/s41467-023-42395-z

8eic, resolution 2.62Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA