Crystal structure of GlpG in complex with peptide ketoamide inhibitor, Ac-RVWHA-ketoamide-phenylbutylCrystal structure of GlpG in complex with peptide ketoamide inhibitor, Ac-RVWHA-ketoamide-phenylbutyl

Structural highlights

6xrp is a 2 chain structure with sequence from Drosophila melanogaster and Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GLPG_ECOLI Rhomboid-type serine protease that catalyzes intramembrane proteolysis.[1] [2]

Publication Abstract from PubMed

Rhomboid intramembrane proteases regulate pathophysiological processes, but their targeting in a disease context has never been achieved. We decoded the atypical substrate specificity of malaria rhomboid PfROM4, but found, unexpectedly, that it results from "steric exclusion": PfROM4 and canonical rhomboid proteases cannot cleave each other's substrates due to reciprocal juxtamembrane steric clashes. Instead, we engineered an optimal sequence that enhanced proteolysis >10-fold, and solved high-resolution structures to discover that boronates enhance inhibition >100-fold. A peptide boronate modeled on our "super-substrate" carrying one "steric-excluding" residue inhibited PfROM4 but not human rhomboid proteolysis. We further screened a library to discover an orthogonal alpha-ketoamide that potently inhibited PfROM4 but not human rhomboid proteolysis. Despite the membrane-immersed target and rapid invasion, ultrastructural analysis revealed that single-dosing blood-stage malaria cultures blocked host-cell invasion and cleared parasitemia. These observations establish a strategy for designing parasite-selective rhomboid inhibitors and expose a druggable dependence on rhomboid proteolysis in non-motile parasites.

Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria.,Gandhi S, Baker RP, Cho S, Stanchev S, Strisovsky K, Urban S Cell Chem Biol. 2020 Aug 31. pii: S2451-9456(20)30333-0. doi:, 10.1016/j.chembiol.2020.08.011. PMID:32888502[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S, Shi Y. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol. 2006 Dec;13(12):1084-91. Epub 2006 Nov 10. PMID:17099694 doi:10.1038/nsmb1179
  2. Maegawa S, Ito K, Akiyama Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry. 2005 Oct 18;44(41):13543-52. PMID:16216077 doi:10.1021/bi051363k
  3. Gandhi S, Baker RP, Cho S, Stanchev S, Strisovsky K, Urban S. Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria. Cell Chem Biol. 2020 Nov 19;27(11):1410-1424.e6. PMID:32888502 doi:10.1016/j.chembiol.2020.08.011

6xrp, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA