Cryo-EM structure of yeast ALG6 in complex with 6AG9 Fab and Dol25-P-GlcCryo-EM structure of yeast ALG6 in complex with 6AG9 Fab and Dol25-P-Glc

Structural highlights

6snh is a 3 chain structure with sequence from Atcc 18824 and Synthetic construct sequences. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
Gene:ALG6, YOR002W, UNA544 (ATCC 18824)
Activity:Dolichyl-P-Glc:Man(9)GlcNAc(2)-PP-dolichol alpha-1,3-glucosyltransferase, with EC number 2.4.1.267
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

[ALG6_YEAST] Adds the first glucose residue to the lipid-linked oligosaccharide precursor for N-linked glycosylation. Transfers glucose from dolichyl phosphate glucose (Dol-P-Glc) onto the lipid-linked oligosaccharide Man(9)GlcNAc(2)-PP-Dol.[1]

Publication Abstract from PubMed

In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins(1). The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates(2). The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate(3,4). Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 A resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 A resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.

Structure and mechanism of the ER-based glucosyltransferase ALG6.,Bloch JS, Pesciullesi G, Boilevin J, Nosol K, Irobalieva RN, Darbre T, Aebi M, Kossiakoff AA, Reymond JL, Locher KP Nature. 2020 Feb 26. pii: 10.1038/s41586-020-2044-z. doi:, 10.1038/s41586-020-2044-z. PMID:32103179[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Reiss G, te Heesen S, Zimmerman J, Robbins PW, Aebi M. Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway. Glycobiology. 1996 Jul;6(5):493-8. PMID:8877369
  2. Bloch JS, Pesciullesi G, Boilevin J, Nosol K, Irobalieva RN, Darbre T, Aebi M, Kossiakoff AA, Reymond JL, Locher KP. Structure and mechanism of the ER-based glucosyltransferase ALG6. Nature. 2020 Feb 26. pii: 10.1038/s41586-020-2044-z. doi:, 10.1038/s41586-020-2044-z. PMID:32103179 doi:http://dx.doi.org/10.1038/s41586-020-2044-z

6snh, resolution 3.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA