Tandem GNAT protein from the clavulanic acid biosynthesis pathway (without AcCoA)Tandem GNAT protein from the clavulanic acid biosynthesis pathway (without AcCoA)

Structural highlights

2wpw is a 4 chain structure with sequence from As 4.1611. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Ligands:
NonStd Res:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

(3R,5R)-Clavulanic acid (CA) is a clinically important inhibitor of Class A beta-lactamases. Sequence comparisons suggest that orf14 of the clavulanic acid biosynthesis gene cluster encodes for an acetyl transferase (CBG). Crystallographic studies reveal CBG to be a member of the emerging structural subfamily of tandem Gcn5-related acetyl transferase (GNAT) proteins. Two crystal forms (C2 and P2(1) space groups) of CBG were obtained; in both forms one molecule of acetyl-CoA (AcCoA) was bound to the N-terminal GNAT domain, with the C-terminal domain being unoccupied by a ligand. Mass spectrometric analyzes on CBG demonstrate that, in addition to one strongly bound AcCoA molecule, a second acyl-CoA molecule can bind to CBG. Succinyl-CoA and myristoyl-CoA displayed the strongest binding to the "second" CoA binding site, which is likely in the C-terminal GNAT domain. Analysis of the CBG structures, together with those of other tandem GNAT proteins, suggest that the AcCoA in the N-terminal GNAT domain plays a structural role whereas the C-terminal domain is more likely to be directly involved in acetyl transfer. The available crystallographic and mass spectrometric evidence suggests that binding of the second acyl-CoA occurs preferentially to monomeric rather than dimeric CBG. The N-terminal AcCoA binding site and the proposed C-terminal acyl-CoA binding site of CBG are compared with acyl-CoA binding sites of other tandem and single domain GNAT proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway.,Iqbal A, Arunlanantham H, Brown T Jr, Chowdhury R, Clifton IJ, Kershaw NJ, Hewitson KS, McDonough MA, Schofield CJ Proteins. 2009 Nov 6. PMID:20014241[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Iqbal A, Arunlanantham H, Brown T Jr, Chowdhury R, Clifton IJ, Kershaw NJ, Hewitson KS, McDonough MA, Schofield CJ. Crystallographic and mass spectrometric analyses of a tandem GNAT protein from the clavulanic acid biosynthesis pathway. Proteins. 2009 Nov 6. PMID:20014241 doi:10.1002/prot.22653

2wpw, resolution 2.38Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA